A certain symmetry is exploited in expressing exact solutions to the focusing nonlinear Schrödinger equation in terms of a triplet of constant matrices. Consequently, for any number of bound states with any number of multiplicities the corresponding soliton solutions are explicitly written in a compact form in terms of a matrix triplet. Conversely, from such a soliton solution the corresponding transmission coefficients, bound-state poles, bound-state norming constants and Jost solutions for the associated Zakharov-Shabat system are evaluated explicitly. These results also hold for the matrix nonlinear Schrödinger equation of any matrix size.
A certain symmetry is exploited in expressing exact solutions to the focusing nonlinear Schrödinger equation in terms of a triplet of constant matrices. Consequently, for any number of bound states with any number of multiplicities the corresponding soliton solutions are explicitly written in a compact form in terms of a matrix triplet. Conversely, from such a soliton solution the corresponding transmission coefficients, bound-state poles, bound-state norming constants and Jost solutions for the associated Zakharov-Shabat system are evaluated explicitly. These results also hold for the matrix nonlinear Schrödinger equation of any matrix size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.