In this paper we present a numerical comparison of various mass-conservative discretizations for the time-dependent Gross-Pitaevskii equation. We have three main objectives. First, we want to clarify how purely mass-conservative methods perform compared to methods that are additionally energy-conservative or symplectic. Second, we shall compare the accuracy of energy-conservative and symplectic methods among each other. Third, we will investigate if a linearized energy-conserving method suffers from a loss of accuracy compared to an approach which requires to solve a full nonlinear problem in each time-step. In order to obtain a representative comparison, our numerical experiments cover different physically relevant test cases, such as traveling solitons, stationary multi-solitons, Bose-Einstein condensates in an optical lattice and vortex pattern in a rapidly rotating superfluid. We shall also consider a computationally severe test case involving a pseudo Mott insulator. Our space discretization is based on finite elements throughout the paper. We will also give special attention to long time behavior and possible coupling conditions between time-step sizes and mesh sizes. The main observation of this paper is that mass conservation alone will not lead to a competitive method in complex settings. Furthermore, energy-conserving and symplectic methods are both reliable and accurate, yet, the energy-conservative schemes achieve a visibly higher accuracy in our test cases. Finally, the scheme that performs best throughout our experiments is an energy-conserving relaxation scheme with linear time-stepping proposed by C. Besse (SINUM,42(3):934-952,2004).