ObjectiveAutoantibodies against antigens carrying distinct post-translational modifications (PTMs), such as citrulline, homocitrulline or acetyllysine, are hallmarks of rheumatoid arthritis (RA). The relation between these anti-modified protein antibody (AMPA)-classes is poorly understood as is the ability of different PTM-antigens to activate B-cell receptors (BCRs) directed against citrullinated proteins (CP). Insights into the nature of PTMs able to activate such B cells are pivotal to understand the ‘evolution’ of the autoimmune response conceivable underlying the disease. Here, we investigated the cross-reactivity of monoclonal AMPA and the ability of different types of PTM-antigens to activate CP-reactive BCRs.MethodsBCR sequences from B cells isolated using citrullinated or acetylated antigens were used to produce monoclonal antibodies (mAb) followed by a detailed analysis of their cross-reactivity towards PTM-antigens. Ramos B-cell transfectants expressing CP-reactive IgG BCRs were generated and their activation on stimulation with PTM-antigens investigated.ResultsMost mAbs were highly cross-reactive towards multiple PTMs, while no reactivity was observed to the unmodified controls. B cells carrying CP-reactive BCRs showed activation on stimulation with various types of PTM-antigens.ConclusionsOur study illustrates that AMPA exhibit a high cross-reactivity towards at least two PTMs indicating that their recognition pattern is not confined to one type of modification. Furthermore, our data show that CP-reactive B cells are not only activated by citrullinated, but also by carbamylated and/or acetylated antigens. These data are vital for the understanding of the breach of B-cell tolerance against PTM-antigens and the possible contribution of these antigens to RA-pathogenesis.
ObjectivesAutoantibodies against post-translationally modified proteins (anti-modified protein antibodies or AMPAs) are a hallmark of rheumatoid arthritis (RA). A variety of classes of AMPAs against different modifications on proteins, such as citrullination, carbamylation and acetylation, have now been described in RA. At present, there is no conceptual framework explaining the concurrent presence or mutual relationship of different AMPA responses in RA. Here, we aimed to gain understanding of the co-occurrence of AMPA by postulating that the AMPA response shares a common ‘background’ that can evolve into different classes of AMPAs.MethodsMice were immunised with modified antigens and analysed for AMPA responses. In addition, reactivity of AMPA purified from patients with RA towards differently modified antigens was determined.ResultsImmunisation with carbamylated proteins induced AMPAs recognising carbamylated proteins and also acetylated proteins. Similarly, acetylated proteins generated (autoreactive) AMPAs against other modifications as well. Analysis of anti-citrullinated protein antibodies from patients with RA revealed that these also display reactivity to acetylated and carbamylated antigens. Similarly, anti-carbamylated protein antibodies showed cross-reactivity against all three post-translational modifications.ConclusionsDifferent AMPA responses can emerge from exposure to only a single type of modified protein. These findings indicate that different AMPA responses can originate from a common B-cell response that diversifies into multiple distinct AMPA responses and explain the presence of multiple AMPAs in RA, one of the hallmarks of the disease.
The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease.
ObjectiveAnti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients display a unique feature defined by the abundant presence of N-linked glycans within the variable domains (V-domains). Recently, we showed that N-glycosylation sites, which are required for the incorporation of V-domain glycans, are introduced following somatic hypermutation. However, it is currently unclear when V-domain glycosylation occurs. Further, it is unknown which factors might trigger the generation of V-domain glycans and whether such glycans are relevant for the transition towards RA. Here, we determined the presence of ACPA-IgG V-domain glycans in paired samples of pre-symptomatic individuals and RA patients.MethodsACPA-IgG V-domain glycosylation was analysed using ultra-high performance liquid chromatography (UHPLC) in paired samples of pre-symptomatic individuals (median interquartile range (IQR) pre-dating time: 5.8 (5.9) years; n=201; 139 ACPA-positive and 62 ACPA-negative) and RA patients (n=99; 94 ACPA-positive and 5 ACPA-negative).ResultsV-domain glycans on ACPA-IgG were already present up to 15 years before disease in pre-symptomatic individuals and their abundance increased closer to symptom onset. Noteworthy, human leucocyte antigen class II shared epitope (HLA-SE) alleles associated with the presence of V-domain glycans on ACPA-IgG.ConclusionOur observations indicate that somatic hypermutation of ACPA, which results in the incorporation of N-linked glycosylation sites and consequently V-domain glycans, occurs already years before symptom onset in individuals that will develop RA later in life. Moreover, our findings provide first evidence that HLA-SE alleles associate with ACPA-IgG V-domain glycosylation in the pre-disease phase and thereby further refine the connection between HLA-SE and the development of ACPA-positive RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.