This study investigates the historical climatology and future projected change of atmospheric rivers (ARs) and precipitation for the Middle East and North Africa (MENA) region. We use a suite of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5, historical and RCP8.5 scenarios) and other observations to estimate AR frequency and mean daily precipitation. Despite its arid-to-semi-arid climate, parts of the MENA region experience strong ARs, which contribute a large fraction of the annual precipitation, such as in the mountainous areas of Turkey and Iran. This study shows that by the end of this century, AR frequency is projected to increase (~20–40%) for the North Africa and Mediterranean areas (including any region with higher latitudes than 35 N). However, for these regions, mean daily precipitation (i.e., regardless of the presence of ARs) is projected to decrease (~15–30%). For the rest of the MENA region, including the Arabian Peninsula and the Horn of Africa, minor changes in AR frequency (±10%) are expected, yet mean precipitation is projected to increase (~50%) for these regions. Overall, the projected sign of change in AR frequency is opposite to the projected sign of change in mean daily precipitation for most areas within the MENA region.
In the original version of the book, the author name "Agniv Sengputa" has been changed to "Agniv Sengupta" in the Chapter "Atmospheric Rivers and Precipitation in the Middle East".The chapter and book have been updated with the changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.