Abstract. Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts -Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations , hindcast simulations with specified dynamics , i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations . The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging setups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.
This study presents a classification of stratospheric extreme events during northern winter into events with or without a consistent downward propagation of anomalies to the troposphere. Anomalous strong and weak stratospheric polar vortex events are detected from daily time series of the polar cap averaged (60°–90°N) geopotential height anomaly. The method is applied to chemistry‐climate model data (E39CA and WACCM3.5) and reanalyses data (ERA40). The analyses show that in about 80% of all events no significant tropospheric response can be detected. The stratospheric perturbation of both weak and strong events with a significant tropospheric response persists significantly longer throughout the stratosphere compared to the events without a tropospheric response. The strength of the stratospheric perturbation determines the strength of the tropospheric response only to a small degree. Results are consistent across all three data sets.
Three types of reference simulations, as recommended by the Chemistry–Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950–2011), hindcast simulations with specified dynamics (1979–2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950–2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging setups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different ver- tical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations
Abstract. In this study the impact of a substantially reduced Arctic sea-ice cover on the lower and middle stratosphere is investigated. For this purpose two simulations with fixed boundary conditions (the so-called time-slice mode) were performed with a Chemistry-Climate Model. A reference time-slice with boundary conditions representing the year 2000 is compared to a second sensitivity simulation in which the boundary conditions are identical apart from the polar sea-ice cover, which is set to represent the years 2089-2099.Three features of Arctic air temperature response have been identified which are discussed in detail. Firstly, tropospheric mean polar temperatures increase up to 7 K during winter. This warming is primarily driven by changes in outgoing long-wave radiation. The tropospheric response (e.g. geopotential height anomaly) is in reasonable agreement with similar studies dealing with Arctic sea-ice decrease and the consequences on the troposphere. Secondly, temperatures decrease significantly in the summer stratosphere caused by a decline in outgoing short-wave radiation, accompanied by a slight increase of ozone mixing ratios. Thirdly, there are short periods of statistical significant temperature anomalies in the winter stratosphere probably driven by modified planetary wave activity, but generally there is no clear stratospheric response. The Arctic Oscillation (AO)-index, which is related to the troposphere-stratosphere coupling favours a more neutral state during winter. The only clear stratospheric response can be shown during November. Significant changes in Arctic temperature, meridional eddy heat fluxes and the Arctic Oscillation (AO)-index are detected.In this study the overall stratospheric response to the prescribed sea-ice anomaly is small compared to the tropospheric changes.
In this study the impact of a substantially reduced Arctic sea-ice cover on the lower and middle stratosphere is investigated. For this purpose two simulations with fixed boundary conditions (the so-called time-slice mode) were performed with a Chemistry-Climate Model. A reference time-slice with boundary conditions representing the year 2000 is compared to a second sensitivity simulation in which the boundary conditions are identical apart from the polar sea-ice cover, which is set to represent the years 2089–2099. <br></br> Three features of Arctic air temperature response have been identified which are worth to be discussed in detail. Firstly, tropospheric mean polar temperatures increase up to 7 K during winter. This warming is primarily driven by changes in outgoing long-wave radiation. Secondly, temperatures decrease significantly in the summer stratosphere caused by a decline in outgoing short-wave radiation, accompanied by a characteristic increase of ozone mixing ratios. Thirdly, there are short periods of statistical significant temperature anomalies in the winter stratosphere probably driven by modified planetary wave activity. <br></br> Both the internal as well as the inter-annual variability of Arctic sea-ice content is related to Arctic climatic fields like surface air temperature, sea level pressure or precipitation, which are analogue with the variability of the Arctic Oscillation (AO)-index. In this study significant changes in the AO-index are detected in the course of winter. Neutral phases of AO appear more often. As expected, the dominating dynamical response of the stratosphere during winter turned out to be consistent to alterations in the tropospheric AO, although it is not statistically significant most of the time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.