The senescence-associated secretory phenotype (SASP) has recently emerged as a driver of and promising therapeutic target for multiple age-related conditions, ranging from neurodegeneration to cancer. The complexity of the SASP, typically assessed by a few dozen secreted proteins, has been greatly underestimated, and a small set of factors cannot explain the diverse phenotypes it produces in vivo. Here, we present the "SASP Atlas," a comprehensive proteomic database of soluble proteins and exosomal cargo SASP factors originating from multiple senescence inducers and cell types. Each profile consists of hundreds of largely distinct proteins but also includes a subset of proteins elevated in all SASPs. Our analyses identify several candidate biomarkers of cellular senescence that overlap with aging markers in human plasma, including Growth/differentiation factor 15 (GDF15), stanniocalcin 1 (STC1), and serine protease inhibitors (SERPINs), which significantly correlated with age in plasma from a human cohort, the Baltimore Longitudinal Study of Aging (BLSA). Our findings will facilitate the identification of proteins characteristic of senescence-associated phenotypes and catalog potential senescence biomarkers to assess the burden, originating stimulus, and tissue of origin of senescent cells in vivo.
The senescence-associated secretory phenotype (SASP) has recently emerged as both a driver of, and promising therapeutic target for, multiple age-related conditions, ranging from neurodegeneration to cancer. The complexity of the SASP, typically monitored by a few dozen secreted proteins, has been greatly underappreciated, and a small set of factors cannot explain the diverse phenotypes it produces in vivo. Here, we present 'SASP Atlas', a comprehensive proteomic database of soluble and exosome SASP factors originating from multiple senescence inducers and cell types. Each profile consists of hundreds of largely distinct proteins, but also includes a subset of proteins elevated in all SASPs. Based on our analyses, we propose several candidate biomarkers of cellular senescence, including GDF15, STC1 and SERPINs. This resource will facilitate identification of proteins that drive specific senescence-associated phenotypes and catalog potential senescence biomarkers to assess the burden, originating stimulus and tissue of senescent cells in vivo. Figure 4. Renal epithelial cells and fibroblasts express distinct sSASPs. A) Venn diagram comparing proteins increased in the sSASP of senescent fibroblasts vs senescent epithelial cells induced by X-irradiation. B) Venn diagram comparing protein increases in the fibroblast sSASP vs decreases in the epithelial sSASP. C) Pathway and network analysis of proteins highly secreted by senescent fibroblasts and epithelial cells. C) Pathway and network analysis of proteins significantly increased in the fibroblast sSASP but significantly decreased in the epithelial cell sSASP.
Mammalian cells infected with the protozoan parasite Toxoplasma gondii are resistant to many apoptotic stimuli transmitted along both the mitochondrial and death receptor pathways. Apoptosis, and its inhibition in infected cells, was examined using multiple morphological, molecular and biochemical approaches. The data strongly indicate manipulation of the host apoptotic machinery at multiple levels, focusing on the inhibition of host caspases. Activation of the pro-apoptotic caspase family of proteases is a biochemical hallmark of apoptosis. Caspase activation occurs in a highly ordered cascade triggered by the initiator caspases 8 and 9, which activate the executioner caspase, caspase 3. Our findings indicate a profound blockade of caspase activation and activity as the molecular basis for the inhibition of apoptosis in T.-gondii-infected cells. Caspase inhibition was demonstrated using multiple intrinsic and synthetic substrates. Although the specific inhibitory molecule remains to be identified, data indicate an absolute requirement for the host transcription factor NF-κB and, by extension, genes regulated by it. We propose that T. gondii activates the host survival response, thereby increasing the overall resistance of infected cells to apoptotic stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.