Background:The hypoxia marker pimonidazole is a candidate biomarker of cancer aggressiveness. We investigated the transcriptional programme associated with pimonidazole staining in prostate cancer.Methods:Index tumour biopsies were taken by image guidance from an investigation cohort of 52 patients, where 43 patients received pimonidazole before prostatectomy. Biopsy location within the index tumour was verified for 46 (88%) patients, who were included for gene expression profiling and immunohistochemistry. Two independent cohorts of 59 and 281 patients were used for validation.Results:Expression of genes in proliferation, DNA repair and hypoxia response was a major part of the transcriptional programme associated with pimonidazole staining. A signature of 32 essential genes was constructed and showed positive correlation to Ki67 staining, confirming the increased proliferation in hypoxic tumours as suggested from the gene data. Positive correlations were also found to tumour stage and lymph node status, but not to blood prostate-specific antigen level, consistent with the findings for pimonidazole staining. The association with aggressiveness was confirmed in validation cohorts, where the signature correlated with Gleason score and had independent prognostic impact, respectively.Conclusions:Pimonidazole staining reflects an aggressive hypoxic phenotype of prostate cancer characterised by upregulation of proliferation, DNA repair and hypoxia response genes.
Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.
ObjectiveTo explore the predictive value of MRI parameters and tumour characteristics before neoadjuvant chemotherapy (NAC) and to compare changes in tumour size and tumour apparent diffusion coefficient (ADC) during treatment, between patients who achieved pathological complete response (pCR) and those who did not.MethodsApproval by the Regional Ethics Committee and written informed consent were obtained. Thirty-one patients with invasive breast carcinoma scheduled for NAC were enrolled (mean age, 50.7; range, 37–72). Study design included MRI before treatment (Tp0), after four cycles of NAC (Tp1) and before surgery (Tp2). Data in pCR versus non-pCR groups were compared and cut-off values for pCR prediction were evaluated.ResultsBefore NAC, HER2 overexpression was the single significant predictor of pCR (p = 0.006). At Tp1 ADC, tumour size and changes in tumour size were all significantly different in the pCR and non-pCR groups. Using 1.42 × 10−3 mm2/s as the cut-off value for ADC, pCR was predicted with sensitivity and specificity of 88% and 80%, respectively. Using a cut-off value of 83% for tumour volume reduction, sensitivity and specificity for pCR were 91% and 80%.ConclusionADC, tumour size and tumour size reduction at Tp1 were strong independent predictors of pCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.