The giant kelp genus Macrocystis C. Agardh (Laminariales, Phaeophyceae) is one of the world's most ecologically and economically important seaweed taxa, yet its taxonomy remains uncertain. Although the genus currently contains four accepted species based on variable holdfast and blade morphology [M. pyrifera (L.) C. Agardh, M. integrifolia Bory, M. angustifolia Bory, and M. laevis C. H. Hay], numerous recent studies on Macrocystis interfertility, genetic relatedness, and morphological plasticity all suggest that the genus is monospecific. We reviewed this evidence and present an explanation for the extreme phenotypic plasticity that results in morphological variability within Macrocystis, driven by the effects of environmental factors on early development of macroscopic sporophytes. We propose that the genus be collapsed back to a single species, with nomenclatural priority given to M. pyrifera.
The rocky, photic benthos of Arctic and Subarctic Biogeographic Regions has a characteristic seaweed flora that includes an extensive high-magnesium calcium carbonate basal layer of crustose coralline red algae. The thickest (10-40 cm) and oldest parts of the crust (previously reported as up to 640-830 years old), primarily at mid-photic depths of 15-25 m, are composed of buildups of the genus Clathromorphum. Due to its annual growth increments and cycling of Mg content with temperature, Clathromorphum has recently been developed as a high-resolution climate archive. The age of the archive is primarily limited by the boring of mollusks that reduce structural integrity, remove the record, and induce local diagenesis. Depressions and gentle slopes in the deeper portions of Subarctic rocky bottoms often collect mixed bioclastic and siliciclastic sediments, including a dense cover of rhodoliths (Lithothamnion glaciale and Lithothamnion tophiforme). In this paper we describe a transition zone of these two environments that forms on cobble/boulder glacial erratic bottoms in northern Labrador. Clathromorphum compactum buildups on the boulders and cobbles projecting through rhodolith beds can be preserved by finegrained anaerobic sediments that in turn reduce mollusk boring. This significantly enhances preservation and longevity of C. compactum crusts. We describe specimens of ages up to 1200 years BP, and discuss how greater ages can be obtained for archiving high-resolution climate information.
Kelp habitats are threatened across the globe, and because of their ecological importance, active conservation and restoration solutions are needed. The use of man-made structures as artificial reefs is one way to enhance kelp habitat by providing suitable substrata, but in the past the ecology of artificial structures has been investigated mainly in contrast to natural coastal habitats, not as elements integrated into the seascape. Indeed, it is now emerging that structuring processes, including ecological interactions (e.g., herbivory), can depend on properties of the surrounding seascape. In Eastern Canada, grazing by the green sea urchin can jeopardize the success of artificial reefs for kelp enhancement. Urchin activity is, however, likely to be influenced by the bottom composition, and thus a seascape approach is needed to integrate urchin behavior and habitat heterogeneity. Adopting a spatially explicit framework, we investigated whether the seascape creates areas of differential grazing risk for kelp by affecting urchin habitat use. Specifically, we transplanted kelp onto modules of artificial substrata distributed on a heterogeneous area that we mapped for bottom type and algal cover. After following kelp survival and urchin distribution over time, we modeled kelp survival as function of urchin metrics and coupled it to urchin use of the habitat models to map grazing risk in the area. Kelp survival was a function of the frequency of the urchins presence. Urchins avoided sandy patches, while bottom composition and algal cover modulated the within-patch urchin use of the habitat, creating heterogeneity in grazing risk. Discrete seascape features (boulders) also increased the grazing risk locally. The heterogeneity of coastal seafloor can thus play a major role in determining the ecological outcomes on artificial structures. Incorporating this information when planning artificial reefs could minimize the detrimental grazing risk, thereby increasing the success of artificial reefs for kelp habitat enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.