Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics.
The Red River Delta (RRD) (Vietnam), a region experiencing rapid population growth, industrialization, and economic development, concentrates 54% of the population of the whole Red River watershed in less than 10% of the basin area. Our study aimed at understanding and quantifying the processes by which the delta affects the nutrient fluxes coming from the upstream watershed before they reach the sea. A comprehensive budget of nitrogen (N), phosphorus (P), and silica (Si) fluxes associated with natural and anthropogenic processes in the terrestrial and hydrological system of the delta was established for five sub-basins of the delta for the period 2000-2006, based on official statistical data, available measurements, and our own sampling campaigns and enquiries. The results show that anthropogenic inputs of N and P brought into the delta area are higher than the amounts delivered by the river from the upstream watershed. However, the amounts of these two elements ultimately delivered to the coastal zone from the delta are lower than the amounts carried by the upstream river, showing extremely efficient retention of both the soils and the delta's drainage network. For Si (taking into account both dissolved and amorphous solid forms), the retention is much lower. High retention of N and P and low retention of Si in the delta area have up to now protected the coastal zone from severe eutrophication problems.Electronic supplementary material The online version of this article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.