The development of natural phospholipids for nanostructured drug delivery systems has attracted much attention in the past decades. Lecithin that was derived from naturally occurring in soybeans (SL) has introduced some auspicious accomplishments to the drug carrying aspect, like effectual encapsulation, controlled release, and successful delivery of the curative factors to intracellular regions in which they procure these properties from their flexible physicochemical and biophysical properties, such as large aqueous center and biocompatible lipid, self-assembly, tunable properties, and high loading capacity. Despite the almost perfect properties as a drug carrier, liposome is known to be quite quickly eliminated from the body systems. The surface modification of liposomes has been investigated in many studies to overcome this drawback. In this review, we intensively discussed the surface-modified liposomes that enhancing the targeting, cellular uptake, and therapeutic response. Moreover, the recent applications of soy lecithin-derived liposome, focusing on cancer treatment, brain targeting, and vaccinology, are also summarized.
Carboplatin (CAR) is a second generation platinum-based compound emerging as one of the most widely used anticancer drugs to treat a variety of tumors. In an attempt to address its dose-limiting toxicity and fast renal clearance, several delivery systems (DDSs) have been developed for CAR. However, unsuitable size range and low loading capacity may limit their potential applications. In this study, PAMAM G3.0 dendrimer was prepared and partially surface modified with methoxypolyethylene glycol (mPEG) for the delivery of CAR. The CAR/PAMAM G3.0@mPEG was successfully obtained with a desirable size range and high entrapment efficiency, improving the limitations of previous CAR-loaded DDSs. Cytocompatibility of PAMAM G3.0@mPEG was also examined, indicating that the system could be safely used. Notably, an in vitro release test and cell viability assays against HeLa, A549, and MCF7 cell lines indicated that CAR/PAMAM G3.0@mPEG could provide a sustained release of CAR while fully retaining its bioactivity to suppress the proliferation of cancer cells. These obtained results provide insights into the potential of PAMAM G3.0@mPEG dendrimer as an efficient delivery system for the delivery of a drug that has strong side effects and fast renal clearance like CAR, which could be a promising approach for cancer treatment.
The HA1 genes from influenza A strains A/Puerto Rico/8/1934 H1N1 (A/PR/8/34) and A/Hatay/2004 H5N1 were each cloned in Pichia pastoris vectors in the correct reading frame with the yeast α-factor secretion signal and the C-terminus His-tag, resulting in simple, fast purification of expressed H1HA1 and H5HA1 protein from the culture medium. Mice vaccinated with the purified proteins showed robust T cell, anti-HA1 IgG responses and developed a high antibody response for hemagglutination inhibition (HI) at titer 7.6 log2. Chickens vaccinated with a dose of 200 µg of H5HA1 mixed with either Montanide or Freund's adjuvants gave HI values of up to 7 log2 at the third week comparable with a licensed inactivated H5N1 vaccine.
-DNA microarray has been a useful tool for global-scale transcriptome analysis. To study the cellular response to expression of recombinant proteins, we compared the transcriptional profiles of recombinant Pichia pastoris strains overexpressing amylase and interleukin-2 versus that of the control strain at different cellular states. The microarray analysis was carried out via the use of Yeast_2 array specific for Saccharomyces cerevisiae and Schizosaccharomyces pombe. The transcirptome analysis of each studied strain at logarithmic growth phase and stationary growth phase showed hundreds of significant differences. In contrast, in comparison of studied strains at the same time points, the numbers of gene which are differentially expressed is rather low. Interestingly, the expression of heterologous alpha-factor secretion signal in the strains overexpressing amylase and interleukin-2 was up-regulated by more than 15 times and 140 times at the exponential and stationary phase, respectively. The results also provide evidence about the false positive result in microarray data when using non-specific array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.