Ant Colony Optimization (ACO) has been successfully employed to tackle a variety of hard combinatorial optimization problems, including the traveling salesman problem, vehicle routing, sequential ordering and timetabling. ACO, as a swarm intelligence framework, mimics the indirect communication strategy employed by real ants mediated by pheromone trails. Among the several algorithms following the ACO general framework, the Ant Colony System (ACS) has obtained convincing results in a range of problems. In Software Engineering, the effective application of ACO has been very narrow, being restricted to a few sparse problems. This paper expands this applicability, by adapting the ACS algorithm to solve the well-known Software Release Planning problem in the presence of dependent requirements. The evaluation of the proposed approach is performed over 72 synthetic datasets and considered, besides ACO, the Genetic Algorithm and Simulated Annealing. Results are consistent to show the ability of the proposed ACO algorithm to generate more accurate solutions to the Software Release Planning problem when compared to Genetic Algorithm and Simulated Annealing.
The trypanosomatid flagellar apparatus contains conventional and unique features, whose roles in infectivity are still enigmatic. Although the flagellum and the flagellar pocket are critical organelles responsible for all vesicular trafficking between the cytoplasm and cell surface, still very little is known about their roles in pathogenesis and how molecules get to and from the flagellar pocket. The ongoing analysis of the genome sequences and proteome profiles of Leishmania major and L infantum, Trypanosoma cruzi, T. brucei, and T. gambiensi ( www.genedb.org ), coupled with our own work on L. chagasi (as part of the Brazilian Northeast Genome Program- www.progene.ufpe.br ), prompted us to scrutinize flagellar genes and proteins of Leishmania spp. promastigotes that could be virulence factors in leishmaniasis. We have identified some overlooked parasite factors such as the MNUDC-1 (a protein involved in nuclear development and genomic fusion) and SQS (an enzyme of sterol biosynthesis), among the described flagellar gene families. A database concerning the results of this work, as well as of other studies of Leishmania and its organelles, is available at http://nugen.lcc.uece.br/LPGate . It will serve as a convenient bioinformatics resource on genomics and pathology of the etiological agents of leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.