This study evaluates the removal of textile dyes using mixed adsorbents prepared by the growth of Aspergillus niger in orange peels. The highest azo dye removal efficiency was obtained at pH 2, solid: liquid ratio (1: 4 g·mL-1) and time of equilibrium of 250 minutes for each dye. The concentrations of Remazol Black B (RB) and Remazol Red (RR) in both synthetic textile effluents were between 25 mg·L-1 and 100 mg·L-1. The mixed adsorbent was characterized by X-ray diffraction (XRD), spectroscopy infrared region (FTIR) and scanning electron microscopy (SEM). The results indicated that there was a 100% removal of RB and 94.85% of RR at the concentration of 25 mg·L-1. At the concentration of 100 mg·L-1, the percentages of removal reached 98.87% for RB and 96.37% for RR, respectively. The proposed mixed adsorbent was able to remove the textile dyes, presenting adsorptive capacities of 20.77 mg·g-1 and 19.28 mg·g-1 for the dyes RB and RR. Regarding the adsorption kinetics, the experimental data showed that the pseudo second order model was the one that best explained the adsorptive process. For the equilibrium results, the Langmuir model and the Langmuir-Freundlich model were the ones that best fit the experimental data of RB and RR, respectively. The mixed adsorbent produced is a promising alternative for the treatment of textile effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.