BackgroundFeed intake plays an important economic role in beef cattle, and is related with feed efficiency, weight gain and carcass traits. However, the phenotypes collected for dry matter intake and feed efficiency are scarce when compared with other measures such as weight gain and carcass traits. The use of genomic information can improve the power of inference of studies on these measures, identifying genomic regions that affect these phenotypes. This work performed the genome-wide association study (GWAS) for dry matter intake (DMI) and residual feed intake (RFI) of 720 Nellore cattle (Bos taurus indicus).ResultsIn general, no genomic region extremely associated with both phenotypic traits was observed, as expected for the variables that have their regulation controlled by many genes. Three SNPs surpassed the threshold for the Bonferroni multiple test for DMI and two SNPs for RFI. These markers are located on chromosomes 4, 8, 14 and 21 in regions near genes regulating appetite and ion transport and close to important QTL as previously reported to RFI and DMI, thus corroborating the literature that points these two processes as important in the physiological regulation of intake and feed efficiency.ConclusionsThis study showed the first GWAS of DMI to identify genomic regions associated with feed intake and efficiency in Nellore cattle. Some genes and QTLs previously described for DMI and RFI, in other subspecies (Bos taurus taurus), that influences these phenotypes are confirmed in this study.
Grinding is one of the most commonly used finishing processes in the manufacture of precision components that also needs to be monitored. Monitoring of the workpiece surface quality is considered highly complex due to particularities of the cutting tool and material removal mechanism. In this context, the monitoring of the grinding process is very important for the metalworking industry and a topic of great interest for machining researchers. Many studies on grinding process monitoring have been developed and most of them focus on process automation. The objective of this work is to monitor the workpiece material removal during grinding by using piezoelectric transducers in the emitter and receiver modes along with digital signal-processing techniques. Tests were performed on a peripheral surface grinding machine equipped with an aluminum oxide grinding wheel. The SAE 4340 steel grade was used as workpiece material. The transducer signals were sampled at a sampling frequency of 2 MHz. The digital signal processing was performed through spectrum analysis and the application of techniques such as root mean square. The mass of the workpieces was measured by means of a digital scale prior to and after grinding tests. The number of grinding passes was varied in order to increase the material removal. The results show that the monitoring technique proposed in this work is sensitive to the material removal in the grinding process. The appropriate selection of frequency bands allows for the best diagnosis in relation to the events that occur during the grinding process.
The interest of the scientific community for ultrasound techniques has increased in recent years due to its wide range of applications. A continuous effort of researchers and industries has been made in order to improve and increase the applicability of non-destructive evaluations (NDE). In this context, the monitoring of manufacturing processes, such as the grinding process, arises. This work proposes a novel technique of ultrasound monitoring (chirp-through-transmission) through low-cost piezoelectric diaphragms and digital signal processing. The proposed technique was applied to the monitoring of material removal during the grinding process. The technique is based on changes in ultrasonic waves when propagated through the material under study, with the difference that this technique does not use traditional parameters of ultrasonic techniques but digital signal processing (RMS and Counts). Furthermore, the novelty of the proposed technique is also the use of low-cost piezoelectric diaphragms in the emission and reception of ultrasonic waves, enabling the implementation of a low-cost monitoring system. The results show that the monitoring technique proposed in this work, when used in conjunction with the frequency band selection, is sensitive to the material removal in the grinding process and therefore presents an advance for monitoring the grinding processes.
The fused deposition modeling (FDM) process, commonly known as three-dimensional (3D) printing, deals with the manufacturing of parts by the subsequent addition of layers of fused plastic filament. The parts obtained during this process can be used for domestic applications, rapid prototyping, or final applications. During the preparation of the printing model (slicing), different process parameters must be defined, such as extruder speed, extruder height in relation to the bed, and bed temperature. Parameters that, if incorrectly defined, can lead to a series of deficiencies in the parts, such as low dimensional accuracy, low surface quality, reduced mechanical resistance, and, eventually, the occurrence of several printing defects in the parts, impairing or even preventing its use. The 3D printing process has a critical period at its beginning during the manufacturing of the piece’s first layer. The present work aims to study some of the geometric anomalies observed in monolayer pieces when some of the printing parameters are improperly defined. Printing tests on monolayer parts were carried out with a polylactic acid (PLA) filament. Herein, a home grade 3D printer, model Graber i3, was used. The height of the extruder to the bed was altered in relation to the recommended value, and three pieces were printed for each height used. The printed parts were scanned with a 1200 × 1200 dpi resolution, using a DCP-L2540DW model scanner. The images obtained were then analyzed using the Matlab® software and the geometric characteristics of the pieces were compared. The study is a first step towards a better understanding of the geometric defects obtained when an incorrect definition of basic parameters occurs when processing the three-dimensional model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.