We investigate the electrical response of Milli-Q deionized water by using a fractional diffusion equation of distributed order with the interfaces (i.e., the boundary conditions at the electrodes limiting the sample) governed by integrodifferential equations. We also consider that the positive and negative ions have the same mobility and that the electric potential profile across the sample satisfies Poisson's equation. In addition, the good agreement between the experimental data and this approach evidences the presence of anomalous diffusion due to the surface effects in this system.
Antimicrobial resistance is a challenging health problem that demands alternative treatments. Nanoplatforms with antimicrobial properties, associated with photodynamic and photothermal therapies, are potential candidates for this task due to characteristics such as non-invasive, antibiotic-free, dual selectivity, and low adverse effects in therapeutic procedures. Graphene quantum dots are a possible substitute for other nanoparticles, especially by presenting low toxicity and low cost. However, graphene quantum dot properties are highly dependent on the synthesis methods, which makes it difficult to compare and improve methods using different studies. In this work, we apply spectroscopic and photothermal methods to investigate a commercially available green fluorescent graphene quantum dot (GQD) as a potential antimicrobial agent and to determine its theranostics properties. The results showed that the photoactivation of the GQD in phosphate-buffered saline solution by light sources with wavelengths shorter than the emission band can generate singlet oxygen and a heat yield of [Formula: see text] under excitation at 532 nm, showing the potential of this GQD as a photodynamic and photothermal agent.
Four alternative fuels (AF) were blended with ultralow sulfur diesel (ULSD) at five different proportions (10, 20, 30, 50, and 100 vol % AF) to create 20 binary mixtures in this work. Two renewable jet AFs and two renewable diesel AFs were investigated. Interactions between the components in the mixtures were analyzed by means of spectroscopy (Raman, nearinfrared), thermophysical (thermal diffusivity, thermo-optic coefficient), and physical (density) techniques. Correlations among the data were investigated using principal component analysis and partial least-squares regression. Trends in Raman intensities and band positions as well as thermophysical properties showed that the AF/ULSD blends resembled two-component mixtures despite the known complexities of the constituents. Specifically, spectra combined according to the percentages of the components in each mixture; thermophysical and physical properties exhibited similar behavior. The spectra showed strong correlations with all three physical properties, creating the possibility for predicting the properties of similar AF/ULSD mixtures. These properties are governed by the chemical compositions of the fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.