We investigated the effects of hand paddles and parachute on the relative duration of stroke phases and index of coordination of competitive crawl-strokers. Eleven male-swimmers (age: 21.9 ± 4.5 years; 50-m best time: 24.23 ± 0.75 s) were evaluated in four maximal-intensity conditions: without equipment, with hand paddles, with parachute, and with both hand paddles and parachute. Relative stroke phase duration of each arm, swimming velocity, and stroke rate were analysed from video (60 Hz). The index of coordination was quantified based on the lag time between propulsive phases of each arm, which defined the coordination mode as catch-up, opposition or superposition. The stroke rate decreased in all conditions (P < 0.05) and swimming velocity decreased with parachute and with paddles + parachutes (P < 0.05). The coordination mode changed from catch-up in free swimming (-2.3 ± 5.0%) to opposition with paddles (-0.2 ± 3.8%), parachute (0.1 ± 3.1%), and paddles + parachute (0.0 ± 3.2%). Despite these variations, no significant differences were observed in relative duration of right and left arm-stroke phases, or in index of coordination. We conclude that the external resistances analysed do not significantly influence stroke phase organization, but, as a chronic effect, may lead to greater propulsive continuity.
In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.
This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.
Hand paddles and parachutes have been used in order to overload swimmers, and consequently increase the propulsive force generation in swimming. However, their use may affect not only kinematical parameters (average speed, stroke length and stroke rate), but also time gaps between propulsive phases, assessed through the index of coordination (IdC). The objective of this study was to assess the effects of hand paddles and parachute use, isolated or combined, on kinematical parameters and coordination. Eleven swimmers (backstroke 50-m time: 29.16 ± 1.43 s) performed four 15-m trials in a randomised order at maximal intensity: (1) without implements (FREE), (2) with hand paddles (HPD), (3) with parachute (PCH) and (4) with hand paddles plus parachute (HPD+PCH). All trials were video-recorded (60 Hz) in order to assess average speed, stroke rate, stroke length, five stroke phases and index of coordination. When average swimming speed was compared to FREE, it was lower in PCH and HPD+PCH, and higher in HPD. Stroke rate decreased in all overloaded trials compared to FREE. The use of hand paddles and parachute increased and decreased stroke length, respectively. In addition, propulsive phase duration was increased when hand paddles were used, and time gaps shifted towards zero (no time gap), especially when hand paddles were combined with parachute. It is conceivable that the combined use of hand paddles and parachute, once allowing overloading both propulsive and resistive forces, provides a specific stimulus to improve muscle strength and propulsive continuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.