Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the reninangiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/ proliferative arm of the RAS consisting of ACE, Ang II, and AT 1 receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT 1 and AT 2 receptors.
n the past few years, novel components of the renin-angiotensin system (RAS) have been described, including the prorenin/ renin receptor, 1 angiotensin-converting enzyme-2 (ACE2), 2,3 and Mas.4 ACE2 and Mas are now considered to be part of a novel axis of the RAS, the ACE2/angiotensin 1 to 7 [Ang-(1-7)]/Mas axis, 4-11 which counteracts most of the action of the classical Rationale: The renin-angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1-7).Objective: To characterize a novel component of the RAS, alamandine. Methods and Results:Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1-7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1-7), including vasodilation, antifibrosis, antihypertensive, and central effects. Key Words: angiotensin II ■ antihypertensive treatment ■ cardiovascular system ■ hypertension ■ renin-angiotensin system ■ vasoactive peptides ■ vascular reactivity Original received February 7, 2013; revision received February 22, 2013; accepted February 27, 2013. In January 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.2 days.Brief UltraRapid Communications are designed to be a format for manuscripts that are of outstanding interest to the readership, report definitive observations, but have a relatively narrow scope. Less comprehensive than Regular Articles but still scientifically rigorous, BURCs present seminal findings that have the potential to open up new avenues of research. A decision on BURCs is rendered within 7 days of submission.From the
Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1−7) [ANG-(1−7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1−7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled “The Renin-Angiotensin System: Going Beyond the Classical Paradigms,” in which the signaling and physiological actions of ANG-(1−7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.
It is well known that the RAS (renin-angiotensin system) plays a key role in the modulation of many functions in the body. AngII (angiotensin II) acting on AT1R (type 1 AngII receptor) has a central role in mediating most of the actions of the RAS. However, over the past 10 years, several studies have presented evidence for the existence of a new arm of the RAS, namely the ACE (angiotensin-converting enzyme) 2/Ang-(1-7) [angiotensin-(1-7)]/Mas axis. Ang-(1-7) can be produced from AngI or AngII via endo- or carboxy-peptidases respectively. ACE2 appears to play a central role in Ang-(1-7) formation. As described for AngII, Ang-(1-7) also has a broad range of effects in different organs and tissues which goes beyond its initially described cardiovascular and renal actions. Those effects are mediated by Mas and can counter-regulate most of the deleterious effects of AngII. The interaction Ang-(1-7)/Mas regulates different signalling pathways, such as PI3K (phosphoinositide 3-kinase)/AKT and ERK (extracellularsignal-regulated kinase) pathways and involves downstream effectors such as NO, FOXO1 (forkhead box O1) and COX-2 (cyclo-oxygenase-2). Through these mechanisms, Ang-(1-7) is able to improve pathological conditions including fibrosis and inflammation in organs such as lungs, liver and kidney. In addition, this heptapeptide has positive effects on metabolism, increasing the glucose uptake and lipolysis while decreasing insulin resistance and dyslipidaemia. Ang-(1-7) is also able to improve cerebroprotection against ischaemic stroke, besides its effects on learning and memory. The reproductive system can also be affected by Ang-(1-7) treatment, with enhanced ovulation, spermatogenesis and sexual steroids synthesis. Finally, Ang-(1-7) is considered a potential anti-cancer treatment since it is able to inhibit cell proliferation and angiogenesis. Thus the ACE2/Ang-(1-7)/Mas pathway seems to be involved in many physiological and pathophysiological processes in several systems and organs especially by opposing the detrimental effects of inappropriate overactivation of the ACE/AngII/AT1R axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.