Carbon dioxide emissions to the atmosphere from inland waters-streams, rivers, lakes and reservoirs-are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly a ect greenhouse-gas emissions from African inland waters.C limate predictions necessitate a full and robust account of natural and anthropogenic greenhouse-gas (GHG) fluxes, especially for CO 2 (refs 1-3), CH 4 (ref. 4) and N 2 O (ref. 5), which together accounted for 94% of the anthropogenic global radiative forcing by well-mixed GHGs in 2011 relative to 1750 (ref. 6). Inland waters (streams, rivers, lakes and reservoirs) are increasingly recognized as important sources of GHGs to the atmosphere, with global CO 2 and CH 4 emissions estimated at 2.1 PgC yr −1 (ref.3) and 0.7 PgC yr −1 (CO 2 -equivalents; CO 2 e) (ref. 4) (1 Pg = 10 15 g), respectively. Considering that the oceanic and land carbon (C) sinks correspond to ∼1.5 and ∼2.0 PgC yr −1 (ref. 7), respectively, the GHG flux from inland waters is significant in the global C budget.In a recent global compilation of inland CO 2 data 3 , <20 data points (out of 6,708, that is, <0.3%) represented African inland waters (with the exception of South Africa, which has been densely sampled), even though they account for ∼12% of both global freshwater discharge 8 and riverine surface area 3 , and include some of the largest rivers and lakes in the world. Equally for the global CH 4 database, there is a strong under-representation of tropical inland waters, whereby a recent synthesis 4 resorted to extrapolating CH 4 fluxes from temperate rivers.The prevailing large uncertainty involved in GHG flux estimates for inland waters, essentially due to the paucity of available data, is coupled to a poor understanding of underlying processes, both of which preclude gauging of future fluxes in response to human pressures. In particular, there is a need to further understand the link between inland water GHG fluxes and ...
[1] To obtain better constraints on the control of seasonal hydrological variations on dissolved organic carbon (DOC) dynamics in headwater catchments, we combined hydrometric monitoring with high-frequency analyses of DOC concentration and DOC chemical composition (specific UV adsorption, 13 C) in soil and stream waters during one complete hydrological cycle in a small lowland catchment of western France. We observed a succession of four hydrological periods, each corresponding to specific DOC signatures. In particular, the rise of the upland water table at the end of the rewetting period yielded to a strong increase of the specific UV absorbance (from 2.5 to 4.0 L mg C À1 m À1 ) and of the 13 C values (from À29 to À27%) of the soil DOC. Another striking feature was the release of large amounts of DOC during reduction of soil Fe-oxyhydroxides at the end of the highflow period. Comparison of hydrometric data with DOC composition metrics showed that soils from the upland domains were rapidly DOC depleted after the rise of the water table in these domains, whereas wetland soils acted as quasi-infinite DOC sources. Results from this study showed that the composition and ultimate source of the DOC exported to the stream will depend on the period within the annual hydrological cycle. However, we found that the aromatic DOC component identified during the high-flow period will likely represent the dominant DOC component in stream waters on an annual basis, because most of the annual stream DOC flux is exported during such periods.Citation: Lambert, T., A.-C. Pierson-Wickmann, G. Gruau, A. Jaffrezic, P. Petitjean, J.-N Thibault, and L. Jeanneau (2013), Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment, Water Resour. Res., 49,[5792][5793][5794][5795][5796][5797][5798][5799][5800][5801][5802][5803]
Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.