We study theoretically the out-of-equilibrium dynamics in momentum space of a weakly interacting disordered Bose gas launched with a finite velocity. In the absence of interactions, coherent multiple scattering gives rise to a background of diffusive particles, on top of which a coherent backscattering interference emerges. We revisit this scenario in the presence of interactions, using a diagrammatic quantum transport theory. We find that the dynamics is governed by coupled kinetic equations describing the thermalization of the diffusive and coherent components of the gas. This phenomenon leads to a destruction of coherent backscattering, well described by an exponential relaxation whose rate is controlled by the particle collision time. These predictions are confirmed by numerical simulations.
A quantum Galilean cannon is a 1D sequence of N hard-core particles with special mass ratios, and a hard wall; conservation laws due to the reflection group AN prevent both classical stochastization and quantum diffraction. It is realizable through specie-alternating mutually repulsive bosonic soliton trains. We show that an initial disentangled state can evolve into one where the heavy and light particles are entangled, and propose a sensor, containing N total atoms, with a √ N total times higher sensitivity than in a one-atom sensor with N total repetitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.