We present a combined experimental and theoretical study of the mutual neutralization process in collisions of lithium ions (Li + ) with deuterium anions (D − ) at collision energies below 1 eV. We employ a merged-beam apparatus to determine total and state-to-state mutual neutralization cross sections. We perform nuclear dynamics calculations using the multi-channel Landau-Zener model based on accurate ab initio molecular data. We obtain an excellent agreement between the experimental and theoretical results over the energy range covered in this work. We show that the basis sets used in the ab initio calculations have a limited influence on the total cross section, but strongly impacts the results obtained for the partial cross sections or the reaction branching ratios. This demonstrates the important role of high-precision measurements to validate the theoretical approaches used to study gas-phase reactive processes. Finally, we compute mutual neutralization rate coefficients for Li + + H − and Li + + D − , and discuss their significance for astrochemistry models.
We have measured total absolute cross sections for the mutual neutralization (MN) of O^{-} with O^{+} and N^{+}. A fine resolution (of about 50 meV) in the kinetic energy spectra of the product neutral atoms allows unique identification of the atomic states participating in the mutual neutralization process. Cross sections and branching ratios have also been calculated down to 1 meV center-of-mass collision energy for these two systems, with a multichannel Landau-Zener model and an asymptotic method for the ionic-covalent coupling matrix elements. The importance of two-electron processes in one-electron transfer is demonstrated by the dominant contribution of a core-excited configuration of the nitrogen atom in N^{+}+O^{-} collisions. This effect is partially accounted for by introducing configuration mixing in the evaluation of coupling matrix elements.
Experiments are conducted to investigate the role of the avoided crossing seam in the photodissociation of H + 3 . Three-dimensional imaging of dissociation products is used to determine the kinetic energy release and branching ratio among the fragmentation channels. Vibrational distributions are measured by dissociative charge transfer of H + 2 products. It is found that the photodissociation of hot H + 3 in the near ultraviolet produces cold H + 2 , but hot H2. Modelling the wavepacket dynamics along the repulsive potential energy surface accounts for the repopulation of the ground potential energy surface. The role of the avoided crossing seam is emphasized and its importance for the astrophysically relevant charge transfer reactions is underlined.
This paper compiles our merged-beam experimental findings for the associative ionization (AI) process from charged reactants, with the aim of guiding future investigations with e.g. the double electrostatic ion storage ring DESIREE in Stockholm. A reinvestigation of the isotopic effect in H−(D−) + He+ collisions is presented, along with a review of
and NO+ production by AI involving ion pairs or excited neutrals, and put in perspective with the mutual neutralization and radiative association reactions. Critical parameters are identified and evaluated for their systematic role in controlling the magnitude of the cross section: isotopic substitution, exothermicity, electronic state density, and spin statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.