Introduced by Tate in [Ta71], Tate algebras play a major role in the context of analytic geometry over the p-adics, where they act as a counterpart to the use of polynomial algebras in classical algebraic geometry. In [CVV19] the formalism of Gröbner bases over Tate algebras has been introduced and effectively implemented. One of the bottleneck in the algorithms was the time spent on reduction, which are significantly costlier than over polynomials. In the present article, we introduce two signature-based Gröbner bases algorithms for Tate algebras, in order to avoid many reductions. They have been implemented in SageMath. We discuss their superiority based on numerical evidences.
Introduced by Tate in [Ta71], Tate algebras play a major role in the context of analytic geometry over the p-adics, where they act as a counterpart to the use of polynomial algebras in classical algebraic geometry. In [CVV19] the formalism of Gröbner bases over Tate algebras has been introduced and e ectively implemented. One of the bottleneck in the algorithms was the time spent on reduction, which are signi cantly costlier than over polynomials. In the present article, we introduce two signature-based Gröbner bases algorithms for Tate algebras, in order to avoid many reductions. They have been implemented in S M. We discuss their superiority based on numerical evidences.
In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output grows with the required precision, both in terms of the size of the coefficients and the size of the support of the series.We prove that ideals which are spanned by polynomials admit a Tate Gröbner basis made of polynomials, and we propose an algorithm, leveraging Mora's weak normal form algorithm, for computing it. As a result, the size of the output of this algorithm grows linearly with the precision. Following the same ideas, we propose an algorithm which computes an overconvergent basis for an ideal spanned by overconvergent series. Finally, we prove the existence of a universal analytic Gröbner basis for polynomial ideals in Tate algebras, compatible with all convergence radii. CCS CONCEPTS• Computing methodologies → Algebraic algorithms.
In this article, we analyze the time minimal control for the saturation of a pair of spins of the same species but with inhomogeneities of the applied RF-magnetic field, in relation with the contrast problem in Magnetic Resonance Imaging. We make a complete analysis based on geometric control to classify the optimal syntheses in the single spin case to pave the road to analyze the case of two spins. The Bocop software is used to determine local minimizers for physical test cases and Linear Matrix Inequalities approach is applied to estimate the global optimal value and validate the previous computations. This is complemented by numerical computations combining shooting and continuation methods implemented in the HamPath software to analyze the structure of the time minimal solution with respect to the set of parameters of the species. Symbolic computations techniques are used to handle the singularity analysis.
Tate introduced in [18] the notion of Tate algebras to serve, in the context of analytic geometry over the -adics, as a counterpart of polynomial algebras in classical algebraic geometry. In [6,7] the formalism of Gröbner bases over Tate algebras has been introduced and advanced signature-based algorithms have been proposed. In the present article, we extend the FGLM algorithm of [8] to Tate algebras. Beyond allowing for fast change of ordering, this strategy has two other important benefits. First, it provides an efficient algorithm for changing the radii of convergence which, in particular, makes effective the bridge between the polynomial setting and the Tate setting and may help in speeding up the computation of Gröbner basis over Tate algebras. Second, it gives the foundations for designing a fast algorithm for interreduction, which could serve as a basic primitive in our previous algorithms and accelerate them significantly. CCS CONCEPTS• Computing methodologies → Algebraic algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.