We present a new method to propagate p-adic precision in computations, which also applies to other ultrametric fields. We illustrate it with some examples and give a toy application to the stable computation of the SOMOS 4 sequence.
Several algorithms in computer algebra involve the computation of a power series solution of a given ordinary differential equation. Over finite fields, the problem is often lifted in an approximate p-adic setting to be well-posed. This raises precision concerns: how much precision do we need on the input to compute the output accurately? In the case of ordinary differential equations with separation of variables, we make use of the recent technique of differential precision to obtain optimal bounds on the stability of the Newton iteration. The results apply, for example, to algorithms for manipulating algebraic numbers over finite fields, for computing isogenies between elliptic curves or for deterministically finding roots of polynomials in finite fields. The new bounds lead to significant speedups in practice.
Using the differential precision methods developed previously by the same authors, we study the p-adic stability of standard operations on matrices and vector spaces. We demonstrate that lattice-based methods surpass naive methods in many applications, such as matrix multiplication and sums and intersections of subspaces. We also analyze determinants , characteristic polynomials and LU factorization using these differential methods. We supplement our observations with numerical experiments.Comment: ISSAC 2015, Jul 2015, Bath, United Kingdom. 201
Introduced by Tate in [Ta71], Tate algebras play a major role in the context of analytic geometry over the p-adics, where they act as a counterpart to the use of polynomial algebras in classical algebraic geometry. In [CVV19] the formalism of Gröbner bases over Tate algebras has been introduced and effectively implemented. One of the bottleneck in the algorithms was the time spent on reduction, which are significantly costlier than over polynomials. In the present article, we introduce two signature-based Gröbner bases algorithms for Tate algebras, in order to avoid many reductions. They have been implemented in SageMath. We discuss their superiority based on numerical evidences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.