Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids 1,2. To date, ferroptosis has been believed to be restrained only by the phospholipid hydroperoxide (PLOOH)-reducing enzyme glutathione peroxidase 4 (GPX4) 3,4 and radicaltrapping antioxidants (RTAs) 5,6. The factors which underlie a given cell type's sensitivity to ferroptosis 7 is, however, critical to understand the pathophysiological role of ferroptosis and how it may be exploited for cancer treatment. Although metabolic constraints 8 and phospholipid composition 9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been yet been identified that account for ferroptosis resistance. We undertook an expression cloning approach to identify genes able to complement GPX4 loss. These efforts uncovered the flavoprotein "apoptosis inducing factor mitochondria-associated 2 (AIFM2)" as a previously unrecognized anti-ferroptotic gene. AIFM2, hereafter renamed "ferroptosis-suppressor-protein 1" (FSP1), initially described as a pro-apoptotic gene 11 , confers an unprecedented protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that ferroptosis suppression by FSP1 is mediated via ubiquinone (CoQ10): its reduced form ubiquinol traps lipid peroxyl radicals that mediate lipid peroxidation, while FSP1 catalyses its regeneration by using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. Conclusively, FSP1/CoQ10/NAD(P)H exists as a standalone parallel system, which cooperates with GPX4 and glutathione (GSH) to suppress phospholipid peroxidation (pLPO) and ferroptosis. program NEUROPROTEKT (03VP04260), as well as the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) to M.C., the Cancer Research UK
Alzheimer’s disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3β (GSK3β). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.
Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognized gasotransmitter. Numerous studies have revealed the role of H2S as a redox signaling molecule that controls important physiological/pathophysiological functions. The underlying mechanism postulated to serve as an explanation of these effects is protein persulfidation (P-SSH, also known as S-sulfhydration), an oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained understudied due to its instability and chemical reactivity similar to other cysteine modifications, making it very difficult to selectively label. Recent developments of persulfide labeling techniques have started unraveling the role of this modification in (patho)physiology. PSSH levels are important for the cellular defense against oxidative injury, albeit they decrease with aging, leaving proteins vulnerable to oxidative damage. Aging is one of the main risk factors for many neurodegenerative diseases. Persulfidation has been shown to be dysregulated in Parkinson's, Alzheimer's, Huntington's disease, and Spinocerebellar ataxia 3. This article reviews the latest discoveries that link protein persulfidation, aging and neurodegeneration, and provides future directions for this research field that could result in development of targeted drug design.
Oxygen (O 2 ) sensing by the carotid body is critical for maintaining cardiorespiratory homeostasis during hypoxia. Hydrogen sulfide (H 2 S) signaling is implicated in carotid body activation by low O 2 . Here, we show that persulfidation of olfactory receptor 78 (Olfr78) by H 2 S is an integral component of carotid body activation by hypoxia. Hypoxia and H 2 S increased persulfidation in carotid body glomus cells and persulfidated cysteine 240 in Olfr78 protein in heterologous system. Olfr78 mutants manifest impaired carotid body sensory nerve, glomus cell, and breathing responses to H 2 S and hypoxia. Glomus cells are positive for G Olf, adenylate cyclase 3 (Adcy3) and cyclic nucleotide–gated channel alpha 2 (Cnga2), key molecules of odorant receptor signaling. Adcy3 or Cnga2 mutants exhibited impaired carotid body and glomus cell responses to H 2 S and breathing responses to hypoxia. These results suggest that H 2 S through redox modification of Olfr78 participates in carotid body activation by hypoxia to regulate breathing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.