This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
Abstract. Sequential pattern mining (SPM) under gap constraint is a challenging task. Many efficient specialized methods have been developed but they are all suffering from a lack of genericity. The Constraint Programming (CP) approaches are not so effective because of the size of their encodings. In [7], we have proposed the global constraint PREFIX-PROJECTION for SPM which remedies to this drawback. However, this global constraint cannot be directly extended to support gap constraint. In this paper, we propose the global constraint GAP-SEQ enabling to handle SPM with or without gap constraint. GAP-SEQ relies on the principle of right pattern extensions. Experiments show that our approach clearly outperforms both CP approaches and the state-of-the-art cSpade method on large datasets.
International audience—Sequential pattern mining under various constraints is a challenging data mining task. The paper provides a generic framework based on constraint programming to discover sequence patterns defined by constraints on local patterns (e.g., gap, regular expressions) or constraints on patterns involving combination of local patterns such as relevant subgroups and top-k patterns. This framework enables the user to mine in a declarative way both kinds of patterns. The solving step is done by exploiting the machinery of Constraint Programming. For complex patterns involving combination of local patterns, we improve the mining step by using dynamic CSP. Finally, we present two case studies in biomedical information extraction and stylistic analysis in linguistics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.