We have studied the vapor-liquid-solid (VLS) growth dynamics of GaP and GaAs in heterostructured GaP-GaAs nanowires. The wires containing multiple GaP-GaAs junctions were grown by the use of metal-organic vapor phase-epitaxy (MOVPE) on SiO(2), and the lengths of the individual sections were obtained from transmission electron microscopy. The growth kinetics has been studied as a function of temperature and the partial pressures of the precursors. We found that the growth of the GaAs sections is limited by the arsine (AsH(3)) as well as the trimethylgallium (Ga(CH(3))(3)) partial pressures, whereas the growth of GaP is a temperature-activated, phosphine(PH(3))-limited process with an activation energy of 115 +/- 6 kJ/mol. The PH(3) kinetics obeys the Hinshelwood-Langmuir mechanism, indicating that the dissociation reaction of adsorbed PH(3) into PH(2) and H on the catalytic gold surface is the rate-limiting step for the growth of GaP. In addition, we have studied the competitive thin layer growth on the sidewalls of the nanowires. Although the rate of this process is 2 orders of magnitude lower than the growth rate of the VLS mechanism, it competes with VLS growth and results in tapered nanowires at elevated temperatures.
The interface chemical composition of heterostructured GaP-GaAs nanowire segments was studied by the use of energy-dispersive x-ray analysis. An arsenic-rich tail in the GaP segments following GaAs could be minimized by reducing the AsH(3) molar fraction and the growth rate. For the temperature regime used for vapour-liquid-solid growth, we observe the opposite trend on interface sharpness compared to high-temperature layer-by-layer growth, that is, the sharpness of the interface improves with reducing temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.