Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.
The CD40-CD154 costimulatory pathway is essential for T cell-dependent immune responses, development of humoral memory, and antigen presenting cell function. These immune functions have been implicated in the pathology of multiple autoimmune diseases as well as allograft rejection. We have generated CFZ533, a fully human, pathway blocking anti-CD40 monoclonal antibody that has been modified with a N297A mutation to render it unable to mediate Fcγ-dependent effector functions. CFZ533 inhibited CD154-induced activation of human leukocytes in vitro, but failed to induce human leukocyte activation. Additionally, CFZ533 was unable to mediate depletion of human CD40 expressing B cells. In vivo, CFZ533 blocked primary and recall T cell-dependent antibody responses in nonhuman primates and abrogated germinal formation without depleting peripheral blood B cells. We also established a relationship between plasma concentrations of CFZ533 and CD40 pathway-relevant pharmacodynamic effects in tissue. Collectively these data support the scientific rationale and posology for clinical utility of this antibody in select autoimmune diseases and solid organ transplantation.
CFZ533 is a pathway blocking, nondepleting anti-CD40 antibody that is in clinical development for inhibition of transplant organ rejection and therapy for autoimmune diseases. A 26-week GLP toxicity study in sexually mature Cynomolgus monkeys was conducted in order to support chronic application of CFZ533. CFZ533 was subcutaneously administered at doses up to 150 mg/kg/week and was safe and generally well tolerated. CFZ533 showed no adverse effects for cardiovascular, respiratory, and neurobehavioral endpoints, and no changes were observed for blood lymphocyte and platelet counts or blood coagulation markers. In line with the nondepleting nature of CFZ533, CD20+ B cells in the blood were only marginally reduced. A complete suppression of germinal center (GC) development in lymph nodes and spleen was the most prominent result of post-mortem histological investigations. This was corroborated by an abrogated T-dependent antibody response (TDAR) to the antigen Keyhole Limpet Hemocyanin (KLH) as well as an absence of anti-drug antibodies (ADAs) in the absence of B cell depletion as seen with immunophenotyping and histology. When serum levels of CFZ533 in recovery animals dropped levels necessary for full CD40 occupancy on B cells, all animals were able to mount a TDAR to KLH. All histological changes also reverted to normal appearance after recovery. In summary, CFZ533 was shown to be well tolerated and safe in the 26-week toxicity study with a distinct pharmacodynamic profile in histology and immune function.
We introduce HistoNet, a deep neural network trained on normal tissue. On 1690 slides with rat tissue samples from 6 preclinical toxicology studies, tissue regions were outlined and annotated by pathologists into 46 different tissue classes. From these annotated regions, we sampled small 224 × 224 pixels images (patches) at 6 different levels of magnification. Using 4 studies as training set and 2 studies as test set, we trained VGG-16, ResNet-50, and Inception-v3 networks separately at each magnification level. Among these model architectures, Inception-v3 and ResNet-50 outperformed VGG-16. Inception-v3 identified the tissue from query images, with an accuracy up to 83.4%. Most misclassifications occurred between histologically similar tissues. Investigation of the features learned by the model (embedding layer) using Uniform Manifold Approximation and Projection revealed not only coherent clusters associated with the individual tissues but also subclusters corresponding to histologically meaningful structures that had not been annotated or trained for. This suggests that the histological representation learned by HistoNet could be useful as the basis of other machine learning algorithms and data mining. Finally, we found that models trained on rat tissues can be used on non-human primate and minipig tissues with minimal retraining.
(2015) Integrated pharmacokinetic, pharmacodynamic and immunogenicity profiling of an anti-CCL21 monoclonal antibody in cynomolgus monkeys, mAbs, 7:5, 829-837, DOI: 10.1080DOI: 10. /19420862.2015 To link to this article: https://doi.org/10. 1080/19420862.2015 Keywords: biotherapeutics, chemokine, FIH predictions, mAb, pharmacokinetics, PK/PD model, preclinicalAbbreviations: ADME, absorption, distribution, metabolism, and elimination; ABC, ammonium bicarbonate; ACN, acetonitrile; ADA, anti-drug antibodies; AUC, area under the curve; BSA, bovine serum albumin; CCL, chemokine (C-C) ligand; CCR7, C-C chemokine receptor 7; DOC, sodium deoxycholate; DRF, dose range finding; ELISA, enzyme-linked immunosorbent assay; FA, formic acid; FcRn, neonatal Fc receptor; FFPE, formalin fixed paraffin embedded; HRP, horseradish peroxidase; IAA, iodoacetamide; Ig, immunoglobulin; IG, immunogenicity; IHC, immunohistochemistry; IL, interleukin; LC-MS/MS, liquid chromatography-mass spectrometry/mass spectrometry; LLOQ, lower limit of quantification; MRD, minimal required dilution; PBS, phosphate buffered saline; PD, pharmacodynamic; PK, pharmacokinetic; QC, quality control; RT, room temperature; SIL-IS, stable isotope labeled peptide -internal standard; TCEP, triphosphine hydrochloride; TMB, 3,3 0 ,5,5 0 -tetramethylbenzidine; ULOQ, upper limit of quantification; VH, variable heavy chain QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single-and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.