We present an analysis of hybridization experiments on a DNA chip studied by surface plasmon resonance imaging. The reaction constants at various temperatures and for different probe lengths are obtained from Langmuir isotherms and hybridization kinetics. The melting curves from temperature scans are also obtained without any labeling of the targets. The effects of the probe length on the hybridization thermodynamics, deduced from the temperature dependence of the reaction constants as well as from the melting curves, suggest dispersion in the length of the hybridization segments of the probes accessible to the targets. Those are, however, sufficient to suggest efficient point mutation detection from temperature scans.
A new methodology for the preparation of addressed DNA matrices is described. The process includes an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing on their 5' end a pyrrole moiety introduced by phosphoramidite chemistry. The electro-controlled synthesis of the copolymer (poly-pyrrole) gives, in one step, a solid conducting film deposited on the surface of an electrode. The resulting polymer consists of pyrrole chains bearing covalently linked oligonucleotide. The polymer growth is limited to the electrode surface, so that it is possible to prepare a DNA matrix on a multiple electrode device by successive copolymerizations. A support bearing four oligonucleotides was used to detect three ras mutations on a synthetic DNA fragment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.