We propose to use multiphoton interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required, the experiment can be considered an extension of the Hanbury Brown-Twiss experiment for spatial intensity correlations of order N>2.
The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.
On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slowlight structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimulated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold.
There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10–100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.