In partially wet granular beds, liquid migrates between particles due to collisions and contacts. This, in turn, influences the flow behaviour of the granular bed. We investigate liquid redistribution in moving monodisperse particles in a rotating drum using Discrete Element Method (DEM) simulations. For weak capillary forces, liquid re-distribution, induced by the continuous flow of particles, leads to concentration of the liquid in the core of the bed, where the flow is quasi-static. High capillary forces reduce the surface flow speed and granular temperature. This decreases liquid bridges rupturing in the flowing layer, allowing the liquid to remain in the outer region of the bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.