An important class of searches on the world-wide-web has the goal to find an entry page (homepage) of an organisation. Entry page search is quite different from Ad Hoc search. Indeed a plain Ad Hoc system performs disappointingly. We explored three non-content features of web pages: page length, number of incoming links and URL form. Especially the URL form proved to be a good predictor. Using URL form priors we found over 70% of all entry pages at rank 1, and up to 89% in the top 10. Non-content features can easily be embedded in a language model framework as a prior probability.
We present a probabilistic model for the retrieval of multimodal documents. The model is based on Bayesian decision theory and combines models for text-based search with models for visual search. The textual model is based on the language modelling approach to text retrieval, and the visual information is modelled as a mixture of Gaussian densities. Both models have proved successful on various standard retrieval tasks. We evaluate the multimodal model on the search task of TREC's video track. We found that the disclosure of video material based on visual information only is still too difficult. Even with purely visual information needs, text-based retrieval still outperforms visual approaches. The probabilistic model is useful for text, visual, and multimedia retrieval. Unfortunately, simplifying assumptions that reduce its computational complexity degrade retrieval effectiveness. Regarding the question whether the model can effectively combine information from different modalities, we conclude that whenever both modalities yield reasonable scores, a combined run outperforms the individual runs.
An important class of searches on the world-wide-web has the goal to find an entry page (homepage) of an organisation. Entry page search is quite different from Ad Hoc search. Indeed a plain Ad Hoc system performs disappointingly. We explored three non-content features of web pages: page length, number of incoming links and URL form. Especially the URL form proved to be a good predictor. Using URL form priors we found over 70% of all entry pages at rank 1, and up to 89% in the top 10. Non-content features can easily be embedded in a language model framework as a prior probability.
The main conclusion from the metrics-based evaluation of video retrieval systems at TREC's video track is that non-interactive image retrieval from general collections using visual information only is not yet feasible. We show how a detailed analysis of retrieval results -looking beyond mean average precision (MAP) scores on topical relevance -gives significant insight in the main problems with the visual part of the retrieval model under study. Such an analytical approach proves an important addition to standard evaluation measures.We investigate (informally) two aspects of the results of a generative probabilistic image retrieval model on the video track search task: how is image similarity captured and how do the visual results contribute to the MAP score. We then take a closer look at the ability of the retrieval model to capture both colour and texture information, and investigate the influence of model building initialisation on the retrieval results. We demonstrate that colour is predominant over texture in the current model, once more showing the difficulty in combining evidence from different sources of information. A final experiment demonstrates that, although the model building process is sensitive to its (random) initialisation, this does not harm retrieval results.
CWI and University of Twente used PF/Tijah, a flexible XML retrieval system, to evaluate structured document retrieval, multimedia retrieval, and entity ranking tasks in the context of INEX 2007. For the retrieval of textual and multimedia elements in the Wikipedia data, we investigated various length priors and found that biasing towards longer elements than the ones retrieved by our language modelling approach can be useful. For retrieving images in isolation, we found that their associated text is a very good source of evidence in the Wikipedia collection. For the entity ranking task, we used random walks to model multi-step relevance propagation from the articles describing entities to all related entities and further, and obtained promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.