The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations 1 interested in comparing their results. TRECVid completed its fifth annual cycle at the end of 2005 and in 2006 TRECVid will involve almost 70 research organizations, universities and other consortia. Throughout its existence, TRECVid has benchmarked both interactive and automatic/manual searching for shots from within a video corpus, automatic detection of a variety of semantic and low-level video features, shot boundary detection and the detection of story boundaries in broadcast TV news. This paper will give an introduction to information retrieval (IR) evaluation from both a user and a system perspective, highlighting that system evaluation is by far the most prevalent type of evaluation carried out. We also include a summary of TRECVid as an example of a system evaluation benchmarking campaign and this allows us to discuss whether such campaigns are a good thing or a bad thing. There are arguments for and against these campaigns and we present some of them in the paper concluding that on balance they have had a very positive impact on research progress.
The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting recordings. It is being created in the context of a project that is developing meeting browsing technology and will eventually be released publicly. Some of the meetings it contains are naturally occurring, and some are elicited, particularly using a scenario in which the participants play different roles in a design team, taking a design project from kick-off to completion over the course of a day. The corpus is being recorded using a wide range of devices including close-talking and far-field microphones, individual and room-view video cameras, projection, a whiteboard, and individual pens, all of which produce output signals that are synchronized with each other. It is also being hand-annotated for many different phenomena, including orthographic transcription, discourse properties such as named entities and dialogue acts, summaries, emotions, and some head and hand gestures. We describe the data set, including the rationale behind using elicited material, and explain how the material is being recorded, transcribed and annotated.
An important class of searches on the world-wide-web has the goal to find an entry page (homepage) of an organisation. Entry page search is quite different from Ad Hoc search. Indeed a plain Ad Hoc system performs disappointingly. We explored three non-content features of web pages: page length, number of incoming links and URL form. Especially the URL form proved to be a good predictor. Using URL form priors we found over 70% of all entry pages at rank 1, and up to 89% in the top 10. Non-content features can easily be embedded in a language model framework as a prior probability.
Summary. *Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video. 4 Published in A. Divakaran (ed.), Multimedia Content Analysis, Signals and Communication Technology,
Motivation: Controlled vocabularies such as the Medical Subject Headings (MeSH) thesaurus and the Gene Ontology (GO) provide an efficient way of accessing and organizing biomedical information by reducing the ambiguity inherent to free-text data. Different methods of automating the assignment of MeSH concepts have been proposed to replace manual annotation, but they are either limited to a small subset of MeSH or have only been compared with a limited number of other systems.Results: We compare the performance of six MeSH classification systems [MetaMap, EAGL, a language and a vector space model-based approach, a K-Nearest Neighbor (KNN) approach and MTI] in terms of reproducing and complementing manual MeSH annotations. A KNN system clearly outperforms the other published approaches and scales well with large amounts of text using the full MeSH thesaurus. Our measurements demonstrate to what extent manual MeSH annotations can be reproduced and how they can be complemented by automatic annotations. We also show that a statistically significant improvement can be obtained in information retrieval (IR) when the text of a user's query is automatically annotated with MeSH concepts, compared to using the original textual query alone.Conclusions: The annotation of biomedical texts using controlled vocabularies such as MeSH can be automated to improve text-only IR. Furthermore, the automatic MeSH annotation system we propose is highly scalable and it generates improvements in IR comparable with those observed for manual annotations.Contact: trieschn@ewi.utwente.nlSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.