In engineering, it is a common desire to couple existing simulation tools together into one big system by passing information from subsystems as parameters into the subsystems under influence. As executed at fixed time points, this data exchange gives the global method a strong explicit component. Globally, such an explicit cosimulation schemes exchange time step can be seen as a step of an one-step method which is explicit in some solution components. Exploiting this structure, we give a convergence proof for such schemes. As flows of conserved quantities are passed across subsystem boundaries, it is not ensured that systemwide balances are fulfilled: the system is not solved as one single equation system. These balance errors can accumulate and make simulation results inaccurate. Use of higher-order extrapolation in exchanged data can reduce this problem but cannot solve it. The remaining balance error has been handled in past work by recontributing it to the input signal in next coupling time step, a technique labeled balance correction methods. Convergence for that method is proven. Further, a proof for the lack of stability of such methods is given for cosimulation schemes with and without balance correction.
In engineering, it is a common desire to couple existing simulation tools together into one big system by passing information from subsystems as parameters into the subsystems under influence. As executed at fixed time points, this data exchange gives the global method a strong explicite component, and as flows of conserved quantities are passed across subsystem boundaries, it is not ensured that systemwide balances are fulfilled: the system is not solved as one single equation system. These balance errors can accumulate and make simulation results inaccurate. Use of higher-order extrapolation in exchanged data can reduce this problem but cannot solve it. The remaining balance error has been handled in past work with balance correction methods which compensate these errors by adding corrections for the balances to the signal in next coupling time step. Further past work combined smooth extrapolation of exchanged data and balance correction.This gives rise to the problem that establishing balance of one quantity a posteriori due to the time delay in general cannot establish or even disturbs the balances of quantities that depend on the exchanged quantities, usually energy. In this work, a method is suggested which allows to choose the quantity that should be balanced to be that energy, and to accurately balance it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.