3924 manner by automatic image classification. This paper describes the operational land cover monitoring system for Mexico. It utilizes national-scale cartographic reference data, all available Landsat satellite imagery, and field inventory data for validation. Seven annual national land cover maps between 1993 and 2008 were produced. The classification scheme defined 9 and 12 classes at two hierarchical levels. Overall accuracies achieved were up to 76%. Tropical and temperate forest was classified with accuracy up to 78% and 82%, respectively. Although specifically designed for the needs of Mexico, the general process is suitable for other participating countries in the REDD+ program to comply with guidelines on standardization and transparency of methods and to assure comparability. However, reporting of change is ill-advised based on the annual land cover products and a combination of annual land cover and change detection algorithms is suggested.
Time series generated from remotely sensed data are important for regional to global monitoring, estimating long-term trends, and analysis of variations due to droughts or other extreme events such as El Niño. Temporal vegetation patterns including phenological states, photosynthetic activity, or biomass estimations are an essential input for climate modeling or the analysis of the carbon cycle. However, long-term analysis requires accurate calibration and error estimation, i.e., the quality of the time series determines its usefulness. Although previous attempts of quality assessment have been made with NOAA-AVHRR data, a first rigorous concept of data quality and validation was introduced with the MODIS sensors. This paper presents the time-series generator (TiSeG), which analyzes the pixel-level quality-assurance science data sets of all gridded MODIS land (MODLand) products suitable for time-series generation. According to user-defined settings, the tool visualizes the spatial and temporal data availability by generating two indices, the number of invalid pixels and the maximum gap length. Quality settings can be modified spatially and temporally to account for regional and seasonal variations of data quality. The user compares several quality settings and masks or interpolates the data gaps. This paper describes the functionality of TiSeG and shows an example of enhanced vegetation index time-series generation with numerous settings for Germany. The example indicates the improvements of time series when the quality information is employed with a critical weighting between data quality and the necessary quantity for meaningful interpolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.