Recently Internet of Things (IoT) is being used in several fields like smart city, agriculture, weather forecasting, smart grids, waste management, etc. Even though IoT has huge potential in several applications, there are some areas for improvement. In the current work, we have concentrated on minimizing the energy consumption of sensors in the IoT network that will lead to an increase in the network lifetime. In this work, to optimize the energy consumption, most appropriate Cluster Head (CH) is chosen in the IoT network. The proposed work makes use of a hybrid meta-heuristic algorithm, namely, Whale Optimization Algorithm (WOA) with Simulated Annealing (SA). To select the optimal CH in the clusters of IoT network, several performance metrics such as the number of alive nodes, load, temperature, residual energy, cost function has been used. The proposed approach is then compared with several state-of-the-art optimization algorithms like Artificial Bee Colony (ABC) algorithm, Genetic Algorithm (GA), Adaptive Gravitational Search algorithm (AGSA), Whale Optimization Algorithm (WOA). The results prove the superiority of the proposed hybrid approach over existing approaches.
The 21st century has seen rapid changes in technology, industry, and social patterns. Most industries have moved towards automation, and human intervention has decreased, which has led to a revolution in industries, named the fourth industrial revolution (Industry 4.0). Industry 4.0 or the fourth industrial revolution (IR 4.0) relies heavily on the Internet of Things (IoT) and wireless sensor networks (WSN). IoT and WSN are used in various control systems, including environmental monitoring, home automation, and chemical/biological attack detection. IoT devices and applications are used to process extracted data from WSN devices and transmit them to remote locations. This systematic literature review offers a wide range of information on Industry 4.0, finds research gaps, and recommends future directions. Seven research questions are addressed in this article: (i) What are the contributions of WSN in IR 4.0? (ii) What are the contributions of IoT in IR 4.0? (iii) What are the types of WSN coverage areas for IR 4.0? (iv) What are the major types of network intruders in WSN and IoT systems? (v) What are the prominent network security attacks in WSN and IoT? (vi) What are the significant issues in IoT and WSN frameworks? and (vii) What are the limitations and research gaps in the existing work? This study mainly focuses on research solutions and new techniques to automate Industry 4.0. In this research, we analyzed over 130 articles from 2014 until 2021. This paper covers several aspects of Industry 4.0, from the designing phase to security needs, from the deployment stage to the classification of the network, the difficulties, challenges, and future directions.
The grid denotes the electric grid which consists of communication lines, control stations, transformers, and distributors that aids in supplying power from the electrical plant to the consumers. Presently, the electric grid constitutes humongous power production units which generates millions of megawatts of power distributed across several demographic regions. There is a dire need to efficiently manage this power supplied to the various consumer domains such as industries, smart cities, household and organizations. In this regard, a smart grid with intelligent systems is being deployed to cater the dynamic power requirements. A smart grid system follows the Cyber-Physical Systems (CPS) model, in which Information Technology (IT) infrastructure is integrated with physical systems. In the scenario of the smart grid embedded with CPS, the Machine Learning (ML) module is the IT aspect and the power dissipation units are the physical entities. In this research, a novel Multidirectional Long Short-Term Memory (MLSTM) technique is being proposed to predict the stability of the smart grid network. The results obtained are evaluated against other popular Deep Learning approaches such as Gated Recurrent Units (GRU), traditional LSTM and Recurrent Neural Networks (RNN). The experimental results prove that the MLSTM approach outperforms the other ML approaches. INDEX TERMS Multidirectional long short-term memory (MLSTM), machine learning (ML), smart grid (SG), cyber physical systems (CPS).
The recent state of the art innovations in technology enables the development of low-cost sensor nodes with processing and communication capabilities. The unique characteristics of these low-cost sensor nodes such as limited resources in terms of processing, memory, battery, and lack of tamper resistance hardware make them susceptible to clone node or node replication attack. The deployment of WSNs in the remote and harsh environment helps the adversary to capture the legitimate node and extract the stored credential information such as ID which can be easily reprogrammed and replicated. Thus, the adversary would be able to control the whole network internally and carry out the same functions as that of the legitimate nodes. This is the main motivation of researchers to design enhanced detection protocols for clone attacks. Hence, in this paper, we have presented a systematic literature review of existing clone node detection schemes. We have also provided the theoretical and analytical survey of the existing centralized and distributed schemes for the detection of clone nodes in static WSNs with their drawbacks and challenges. INDEX TERMS Wireless sensor networks (WSNs), clone attack, clone attack detection schemes, systematic literature review (SLR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.