A wireless sensor network (WSN) consists of a huge number of sensor nodes that are inadequate in energy, storage and processing power. One of the major tasks of the sensor nodes is the collection of data and forwarding the gathered data to the base station (BS). Hence, the network lifetime becomes the major criteria for effective design of the data gathering schemes in WSN. In this paper, an energy-efficient LEACH (EE-LEACH) Protocol for data gathering is introduced. It offers an energy-efficient routing in WSN based on the effective data ensemble and optimal clustering. In this system, a cluster head is elected for each clusters to minimize the energy dissipation of the sensor nodes and to optimize the resource utilization. The energy-efficient routing can be obtained by nodes which have the maximum residual energy. Hence, the highest residual energy nodes are selected to forward the data to BS. It helps to provide better packet delivery ratio with lesser energy utilization. The experimental results shows that the proposed EE-LEACH yields better performance than the existing energy-balanced routing protocol (EBRP) and LEACH Protocol in terms of better packet delivery ratio, lesser end-to-end delay and energy consumption. It is obviously proves that the proposed EE-LEACH can improve the network lifetime.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co‐active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co‐occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.
Abnormal cells in human brain lead to the development of tumors. Manual detection of this tumor region is a time‐consuming process. Hence, this paper proposes an efficient and automated computer‐aided methodology for brain tumor detection and segmentation using image registration technique and classification approaches. This proposed work consists of the following modules: image registration, contourlet transform, and feature extraction with feature normalization, classification, and segmentation. The extracted features are optimized using genetic algorithm, and then an adaptive neuro‐fuzzy inference system classification approach is used to classify the features for the detection and segmentation of tumor regions in brain magnetic resonance imaging. A quantitative analysis is performed to evaluate the proposed methodology for brain tumor detection using sensitivity, specificity, segmentation accuracy, precision, and Dice similarity coefficient.
Objective:The Glioma brain tumor detection and segmentation methods are proposed in this paper using machine learning approaches. Methods:The boundary edge pixels are detected using Kirsch’s edge detectors and then contrast adaptive histogram equalization method is applied on the edge detected pixels. Then, Ridgelet transform is applied on this enhanced brain image in order to obtain the Ridgelet multi resolution coefficients. Further, features are derived from the Ridgelet transformed coefficients and the features are optimized using Principal Component Analysis (PCA) method and these optimized features are classified into Glioma or non-Glioma brain images using Co-Active Adaptive Neuro Fuzzy Expert System (CANFES) classifier.Results:The proposed method with PCA and CANFES classification approach obtains 97.6% of se, 98.56% of sp, 98.73% of Acc, 98.85% of Pr, 98.11% of FPR and 98.185 of FNR, then the proposed Glioma brain tumor detection method using CANFES classification approach only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.