The use of software controlled passive Reconfigurable Intelligent Surface (RIS) in wireless communications has attracted many researchers in recent years. RIS has a certain degree of control over the scattering and reflection characteristics of the electromagnetic waves, compared to the conventional communications in which the received signal is degraded due to the uncontrollable scattering of the transmitted signal and its interaction with the objects in propagating medium. Further, in RIS assisted communications, the phases of the multiple incoming signals can be controlled to enable constructive addition of multiple signals from different channel paths to improve Signal to Noise Ratio (SNR). On the other hand, Non-Orthogonal Multiple Access (NOMA) provides massive connectivity and low latency. The power domain variant NOMA uses superposition coded symbols with different powers for different user symbols. In this paper, a novel RIS assisted downlink NOMA system is proposed by combining the merits of both RIS and NOMA to improve the reliability of the system. Analytical expressions are derived for the Bit Error Rate (BER) performance of the proposed RIS assisted power domain NOMA system. The BER performance of the proposed system is analyzed using the numerical simulation results. It is observed that the proposed system has better performance than the conventional NOMA system.
SummarySpatial modulation is a potential candidate for 5G wireless communication systems that provides high spectral efficiency with high reliability and low complexity. Spatial modulation conveys information in the index of transmitting antenna along with conventional modulation scheme. Also, energy efficiency communication plays a vital role in 5G wireless communication. In this article, energy efficiency and spectral efficiency are focused on a bidirectional relay network. In the proposed bidirectional relay network, the energy consumption burden at the relay node is reduced by placing a power splitter that coordinates the energy harvesting and information processing at the relay node. Spatial modulation is employed at all nodes to reduce the effect of interchannel interference and synchronization problem in the receiver. The combined effect of spatial modulation in all nodes and energy harvest at the relay node are analyzed in the bidirectional relay network. The end‐to‐end outage probability expression for the bidirectional relay network is derived in terms of power splitting factor at relay node. Analytical simulation results have been verified by Monte‐Carlo simulations. The overall performance of the proposed system is compared with an existing literature and found that the proposed system is having better spectral efficiency and energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.