Four lytic bacteriophages designated as φVh1, φVh2, φVh3, and φVh4 were isolated from commercial shrimp hatcheries, possessing broad spectrum of infectivity against luminescent Vibrio harveyi isolates, considering their potential as biocontrol agent of luminescent bacterial disease in shrimp hatcheries, and were characterized by electron microscopy, genomic analysis, restriction enzyme analysis (REA), and pulsed-field gel electrophoresis (PFGE). Three phages φVh1, φVh2, and φVh4 had an icosahedral head of 60-115 nm size with a long, noncontractile tail of 130-329 × 1-17 nm, belonged to the family Siphoviridae. φVh3 had an icosahedral head (72 ± 5 nm) with a short tail (27 × 12 nm) and belonged to Podoviridae. REA with DraI and PFGE of genomic DNA digested with ScaI and XbaI and cluster analysis of their banding patterns indicated that φVh3 was distinct from the other three siphophages. PFGE-based genome mean size of the four bacteriophages φVh1, φVh2, φVh3, and φVh4 was estimated to be about 85, 58, 64, and 107 kb, respectively. These phages had the property of generalized transduction as demonstrated by transduction with plasmid pHSG 396 with frequencies ranging from 4.1 × 10(-7) to 2 × 10(-9) per plaque-forming unit, suggesting a potential ecological role in gene transfer among aquatic vibrios.
In this study, chlorhexidine (CHX)-silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram-positive and Gram-negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics. Fig. 4 Antibacterial gauze preparation and wound healing studies (a) Photograph images of sonochemical method-based Ag-CHX-coated gauze preparation, (b) Photograph images of wound healing studies on mice
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.