Studies were conducted in tropical greenhouses to elucidate the role of UV light (UV) for the orientation and flight behavior of the thrips Ceratothripoides claratris (Shumsher) (Thysanoptera: Thripidae), an important pest on tomato (Lycopersicum spp.), in the hot and humid tropics of South-East Asia. Four greenhouse types characterized by different combinations of UV-absorbing or -transmitting plastic films and nets on the roof and sidewalls, respectively, were used in these studies. In choice experiments C. claratris always preferred the environment with higher UV intensity. Furthermore, natural thrips populations around the greenhouses were captured during the majority of control dates in lower numbers on sticky traps on the outer sidewalls of greenhouses clad with UV-absorbing materials compared with UV-transmitting materials. The immigration of thrips into the UV-absorbing greenhouses also was impeded, as measured by sticky traps on the inner side walls. UV-absorbing plastic roofs showed the most pronounced deterrent effect for thrips movement toward greenhouses, and the UV-absorbing net effectively reduced thrips numbers crossing the net barrier into the greenhouse. A simple extension of UV-absorbing plastic roof around conventional greenhouses clad with UV-transmitting plastic and net reduced thrips capture rates inside the greenhouse up to 77% when thrips was released at 1 m distance from the net walls. These results are discussed in the context of wavelength dependent insect vision and the dilemma of tropical greenhouse constructions, i.e., physical pest exclusion versus appropriate ventilation to ensure a conducive microclimate for plant growth.
Rural communities in Virginia have experienced a decline caused by national economic trends. Formerly vibrant towns with rich histories and cultures increasingly suffer from a shrinking population and a lack of new investment, directly impacting the quality of life and services like education or health care. The loss of identity is a hindrance to innovative planning strategies and entrepreneurship. This paper reflects on an ongoing serious game effort developed by the University of Virginia and piloted in Martinsville, VA. That city’s once-vibrant community faces challenges like unemployment, opioid addiction, and obesity. We are Martinsville (WAM) recognizes Martinsville’s rich ties to its history and cultural assets, offering a digital tool in support of a creative placemaking strategy. WAM fosters community engagement while simultaneously increasing outdoor activities and allowing stakeholders to generate place-based game content. This paper describes the findings of the pilot project.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.