Past work in relation extraction mostly focuses on binary relation between entity pairs within single sentence. Recently, the NLP community has gained interest in relation extraction in entity pairs spanning multiple sentences. In this paper, we propose a novel architecture for this task: inter-sentential dependency-based neural networks (iDepNN). iDepNN models the shortest and augmented dependency paths via recurrent and recursive neural networks to extract relationships within (intra-) and across (inter-) sentence boundaries. Compared to SVM and neural network baselines, iDepNN is more robust to false positives in relationships spanning sentences. We evaluate our models on four datasets from newswire (MUC6) and medical (BioNLP shared task) domains that achieve state-of-the-art performance and show a better balance in precision and recall for inter-sentential relationships. We perform better than 11 teams participating in the BioNLP shared task 2016 and achieve a gain of 5.2% (0.587 vs 0.558) in F1 over the winning team. We also release the crosssentence annotations for MUC6.Paul Allen has started a company and named [Vern Raburnse1 its President. The company, to be called [Paul Allen Group] e2 will be based in Bellevue, Washington.
This paper deals with fuzzy clustering by minimizing the fuzzy c-means (FCM) model. We introduce two new methods for minimizing the two reformulated versions of the FCM objective function by particle swarm optimization (PSO). In PSO-V each particle represents a component of a cluster center. In PSO-U each particle represents an unscaled and unnormalized membership value. PSO-V and PSO-U are compared with alternating optimization (AO) and with ant colony optimization (ACO) on two benchmark data sets: the single outlier and the lung cancer data sets. The stochastic methods ACO, PSO-V, and PSO-U are slower than AO, but in each experiment one of the two PSO variants significantly outperforms the other algorithms.
The search for interpretable reinforcement learning policies is of high academic and industrial interest. Especially for industrial systems, domain experts are more likely to deploy autonomously learned controllers if they are understandable and convenient to evaluate. Basic algebraic equations are supposed to meet these requirements, as long as they are restricted to an adequate complexity. Here we introduce the genetic programming for reinforcement learning (GPRL) approach based on model-based batch reinforcement learning and genetic programming, which autonomously learns policy equations from pre-existing default state-action trajectory samples. GPRL is compared to a straight-forward method which utilizes genetic programming for symbolic regression, yielding policies imitating an existing well-performing, but non-interpretable policy. Experiments on three reinforcement learning benchmarks, i.e., mountain car, cart-pole balancing, and industrial benchmark, demonstrate the superiority of our GPRL approach compared to the symbolic regression method. GPRL is capable of producing well-performing interpretable reinforcement learning policies from pre-existing default trajectory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.