Internet traffic identification is an important tool for network management. It allows operators to better predict future traffic matrices and demands, security personnel to detect anomalous behavior, and researchers to develop more realistic traffic models. We present here a traffic classifier that can achieve a high accuracy across a range of application types without any source or destination host-address or port information. We use supervised machine learning based on a Bayesian trained neural network. Though our technique uses training data with categories derived from packet content, training and testing were done using features derived from packet streams consisting of one or more packet headers. By providing classification without access to the contents of packets, our technique offers wider application than methods that require full packet/payloads for classification. This is a powerful advantage, using samples of classified traffic to permit the categorization of traffic based only upon commonly available information.
We study the behaviour of the Betfair betting market and the sterling/dollar exchange rate (futures price) during 24 June 2016, the night of the EU referendum. We investigate how the two markets responded to the announcement of the voting results. We employ a Bayesian updating methodology to update prior opinion about the likelihood of the final outcome of the vote. We then relate the voting model to the real time evolution of the market determined prices as results are announced. We find that although both markets appear to be inefficient in absorbing the new information contained in vote outcomes, the betting market is apparently less inefficient than the FX market. The different rates of convergence to fundamental value between the two markets leads to highly profitable arbitrage opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.