Newly named in 1989, Capnocytophaga canimorsus is a bacterial pathogen found in the saliva of healthy dogs and cats, and is transmitted to humans principally by dog bites. This review compiled all laboratory-confirmed cases, animal sources, and virulence attributes to describe its epidemiology, clinical features, and pathogenesis. An estimated 484 patients with a median age of 55 years were reported, two-thirds of which were male. The case-fatality rate was about 26%. Its clinical presentations included severe sepsis and fatal septic shock, gangrene of the digits or extremities, high-grade bacteremia, meningitis, endocarditis, and eye infections. Predispositions were prior splenectomy in 59 patients and alcoholism in 58 patients. Dog bites before illness occurred in 60%; additionally, in 27%, there were scratches, licking, or other contact with dogs or cats. Patients with meningitis showed more advanced ages, higher male preponderance, lower mortality, and longer incubation periods after dog bites than patients with sepsis (p < 0.05). Patients with prior splenectomy presented more frequently with high-grade bacteremia than patients with intact spleens (p < 0.05). The organism possesses virulence attributes of catalase and sialidase production, gliding motility, cytotoxin production, and resistance to killing by serum complement due to its unique lipopolysaccharide. Penicillin is the drug of choice, but some practitioners prefer third-generation cephalosporins or beta-lactamase inhibitor combinations. C. canimorsus has emerged as a leading cause of sepsis, particularly post-splenectomy sepsis, and meningitis after dog bites.
Global inputs of NO(x) are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NO(x) sources. However, elucidating NO(x) sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (delta15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in delta15N are strongly correlated with NO(x) emissions from surrounding stationary sources and additionally that delta15N is more strongly correlated with surrounding stationary source NO(x) emissions than pH, SO4(2-), or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NO(x) source in the eastern U.S., our results suggest that wet NO3- deposition at sites in this study is strongly associated with NO(x) emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NO(y) deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in delta15N values are a robust indicator of stationary NO(x) contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO3- deposition, regional emission inventories, and for evaluating progress toward NO(x) reduction goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.