Temperature and precipitation are the most important factors responsible for agricultural productivity variations. In 2018 spring/summer growing season, Europe experienced concurrent anomalies of both. Drought conditions in central and northern Europe caused yield reductions up to 50% for the main crops, yet wet conditions in southern Europe saw yield gains up to 34%, both with respect to the previous 5‐year mean. Based on the analysis of documentary and natural proxy‐based seasonal paleoclimate reconstructions for the past half millennium, we show that the 2018 combination of climatic anomalies in Europe was unique. The water seesaw, a marked dipole of negative water anomalies in central Europe and positive ones in southern Europe, distinguished 2018 from the five previous similar droughts since 1976. Model simulations reproduce the 2018 European water seesaw in only 4 years out of 875 years in historical runs and projections. Future projections under the RCP8.5 scenario show that 2018‐like temperature and rainfall conditions, favorable to crop growth, will occur less frequent in southern Europe. In contrast, in central Europe high‐end emission scenario climate projections show that droughts as intense as 2018 could become a common occurrence as early as 2043. While integrated European and global agricultural markets limited agro‐economic shocks caused by 2018's extremes, there is an urgent need for adaptation strategies for European agriculture to consider futures without the benefits of any water seesaw.
Based on farm census data, we explore the climate-dependent incidence of six farm types and the climate-induced impacts on land rental prices in Germany. We apply a structural Ricardian approach by modeling the dominant farm type at 9,684 communities as depending on temperature, precipitation and other geographic variables. Rents per farm type are then modeled as depending on climate and other conditioning variables. These results allow the projection of the consequences of climate change as changes in our climate variables. Our results indicate that permanent-crop farms are more likely to dominate in higher temperatures, whereas forage or mixed farms dominate in areas of higher precipitation levels. Land rental prices display a concave response to increases in annual precipitation, and appear to increase linearly with rising annual temperature. Moderate-warming simulation results for future decades benefit most farm types but seem to penalise forage farms. Rental prices are projected to increase, ceteris paribus, for all farm types.
Numerous studies show that insects are efficient in converting organic waste into proteins and fats, which makes them an interesting alternative source of feed. Moreover, since around one-third of global food produced for human consumption is lost or wasted, the production of insect-based meals from food waste is considered a sustainable alternative to other protein sources. This paper introduces a quantitative framework able to analyse the economic implications of developing a large-scale insect-based meal industry worldwide, which would require important regulatory changes. Our calculations, based on findings from the literature, suggest that almost 1.4 billion tonnes of food, that could potentially be used as insect feed, went to waste at the world level in 2018, a figure that is projected to rise to 2 billion tonnes by 2030. Results show that the use of food waste for insect meal and oil production would have important downward price impacts on meals and oils (fish- and plant-based), reducing feed costs and stimulating global aquaculture and livestock production, reducing total land use for agriculture production and lead to a lower dependence on protein imports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.