Four 2-substituted Tet-AMPA [Tet = tetrazolyl, AMPA = 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid] analogues were characterized functionally at the homomeric AMPA receptors GluR1i, GluR2Qi, GluR3i, and GluR4i in a Fluo-4/Ca2+ assay. Whereas 2-Et-Tet-AMPA, 2-Pr-Tet-AMPA, and 2-iPr-Tet-AMPA were nonselective GluR agonists, 2-Bn-Tet-AMPA exhibited a 40-fold higher potency at GluR4i than at GluR1i. Examination of homology models of the S1-S2 domains of GluR1 and GluR4 containing 2-Bn-Tet-AMPA suggested four nonconserved residues in a region adjacent to the orthosteric site as possible determinants of the GluR4i/GluR1i selectivity. In a mutagenesis study, doubly mutating M686V/I687A in GluR1i in combination with either D399S or E683A increased both the potency and the maximal response of 2-Bn-Tet-AMPA at this receptor to levels similar to those elicited by the agonist at GluR4i. The dependence of the novel selectivity profile of 2-Bn-Tet-AMPA upon residues located outside of the orthosteric site underlines the potential for developing GluR subtype selective ligands by designing compounds with substituents that protrude beyond the (S)-Glu binding pocket.
The two enantiomeric pairs of erythro- and threo-amino-(3'-hydroxy-4',5'-dihydro-isoxazol-5'-yl)-acetic acids were synthesized via the 1,3-dipolar cycloaddition of bromonitrile oxide to ( R)- or ( S)-3-( tert-butoxycarbonyl)-2,2-dimethyl-4-vinyloxazolidine. The pharmacological profiles of the studied amino acids reflect the relationship between the activity/selectivity and the stereochemistry of the two stereogenic centers: while the (2 S,5' S) stereoisomer is an agonist at the AMPA and KA receptors, its (2 R,5' R) enantiomer interacts selectively with the NMDA receptors; the (2 S,5' R) stereoisomer is the only one capable to activate the mGluRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.