The ephrins, ligands of Eph receptor tyrosine kinases, have been shown to act as repulsive guidance molecules and to induce collapse of neuronal growth cones. For the first time, we show that the ephrin-A5 collapse is mediated by activation of the small GTPase Rho and its downstream effector Rho kinase. In ephrin-A5–treated retinal ganglion cell cultures, Rho was activated and Rac was downregulated. Pretreatment of ganglion cell axons with C3-transferase, a specific inhibitor of the Rho GTPase, or with Y-27632, a specific inhibitor of the Rho kinase, strongly reduced the collapse rate of retinal growth cones. These results suggest that activation of Rho and its downstream effector Rho kinase are important elements of the ephrin-A5 signal transduction pathway.
The Eph family is thought to exert its function through the complementary expression of receptors and ligands. Here, we show that EphA receptors colocalize on retinal ganglion cell (RGC) axons with EphA ligands, which are expressed in a high-nasal-to-low-temporal pattern. In the stripe assay, only temporal axons are normally sensitive for repellent axon guidance cues of the caudal tectum. However, overexpression of ephrinA ligands on temporal axons abolishes this sensitivity, whereas treatment with PI-PLC both removes ephrinA ligands from retinal axons and induces a striped outgrowth of formerly insensitive nasal axons. In vivo, retinal overexpression of ephrinA2 leads to topographic targeting errors of temporal axons. These data suggest that differential ligand expression on retinal axons is a major determinant of topographic targeting in the retinotectal projection.
The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.
During development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection.
Advanced second generation inhibitors of histone deacetylases (HDAC) are currently used in clinical development. This study aimed at comparing the pharmacological properties of selected second generation HDAC inhibitors with the hydroxamate and benzamide head group, namely SAHA, LAQ824/LBH589, CI994, MS275 and MGCD0103. In biochemical assays using recombinant HDAC1, 3, 6 and 8 isoenzymes, SAHA and LAQ824/LBH589 behave as quite unselective HDAC inhibitors. In contrast, the benzamides CI994, MS275 and MGCD0103 are more selective, potent inhibitors of at least HDAC1 and HDAC3. All HDAC inhibitors induce histone H3 hyperacetylation, correlating with inhibition of proliferation, induction of cell differentiation and apoptosis. A broad cytotoxicity is seen across cell lines from different tumor entities with LAQ824/LBH589 being the most potent agents. The apoptosis inducing activity is evident in arrested and proliferating RKO colon cancer cells with inducible, heterologous p21 waf1 expression, indicative for a cell-cycle independent mode-of-action. Differentiation of MDA-MB468 breast cancer cells is induced by benzamide and hydroxamate analogs. The reversibility of drug action was evaluated by pulse treatment of A549 lung cancer cells. Whereas paclitaxel induced irreversible cell cycle alterations already after 6 hr treatment, HDAC inhibitor action was retarded and irreversible after >16 hr treatment. Interestingly, pulse treatment was equally effective as continous treatment. Finally, the efficacy of LAQ824, SAHA and MS275 in A549 nude mice xenografts was comparable to that of paclitaxel at well tolerated doses. We conclude that despite a different HDAC isoenzyme inhibition profile, hydroxamate and benzamide analogs as studied display similar cellular profiles. ' 2007 Wiley-Liss, Inc.Key words: HDAC inhibition; hydroxamate and benzamide head group; isoenzyme selectivity; protein hyperacetylation Posttranslational modification by reversible acetylation of lysine residues in histone proteins and their putative role in RNA synthesis was first described in 1964 by Allfrey et al.1 Since this landmark article, the natural antifungal antibiotic Trichostatin A (TSA) was found to act by inhibition of mammalian histone deacetylases (HDAC).2 Subsequently, the first human HDAC named HD1 (syn. HDAC1), a homolog of yeast transcriptional regulator Rpd3, was isolated.3 Since then, enormous progress was made in understanding reversible protein acetylation in general and histone modifications in particular.4,5 Chromatin condensation and transcriptional activity is regulated by acetylation of N-terminal lysine residues in core histone proteins H3 and H4 by histone acetyltransferases (HATs) and deacetylation by HDACs. HDACs are components of transcriptional silencing complexes as first described for the mRpd3/N-CoR /mSin3 complex.6 Up to now, 11 different HDAC isoenzymes belonging to the class I (HDAC 1, 2, 3, 8), class II (HDAC 4-7, 9, 10) and class IV families (HDAC11) have been described. 7 HDAC class III enzymes, also named Sirtuin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.