Scale is a vital component to consider in ecological research, and spatial resolution or grain size is one of its key facets. Species distribution models (SDMs) are prime examples of ecological research in which grain size is an important component. Despite this, SDMs rarely explicitly examine the effects of varying the grain size of the predictors for species with different niche breadths. To investigate the effect of grain size and niche breadth on SDMs, we simulated four virtual species with different grain sizes/niche breadths using three environmental predictors (elevation, aspect, and percent forest) across two real landscapes of differing heterogeneity in predictor values. We aggregated these predictors to seven different grain sizes and modeled the distribution of each of our simulated species using MaxEnt and GLM techniques at each grain size. We examined model accuracy using the AUC statistic, Pearson's correlations of predicted suitability with the true suitability, and the binary area of presence determined from suitability above the maximum true skill statistic (TSS) threshold. Habitat specialists were more accurately modeled than generalist species, and the models constructed at the grain size from which a species was derived generally performed the best. The accuracy of models in the homogenous landscape deteriorated with increasing grain size to a greater degree than models in the heterogenous landscape. Variable effects on the model varied with grain size, with elevation increasing in importance as grain size increased while aspect lost importance. The area of predicted presence was drastically affected by grain size, with larger grain sizes over predicting this value by up to a factor of 14. Our results have implications for species distribution modeling and conservation planning, and we suggest more studies include analysis of grain size as part of their protocol.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Irrigated agriculture has important implications for achieving the United Nations Sustainable Development Goals. However, there is a lack of systematic and quantitative analyses of its impacts on food–energy–water–CO2 nexus. Here we studied impacts of irrigated agriculture on food–energy–water–CO2 nexus across food sending systems (the North China Plain (NCP)), food receiving systems (the rest of China) and spillover systems (Hubei Province, affected by interactions between sending and receiving systems), using life cycle assessment, model scenarios, and the framework of metacoupling (socioeconomic-environmental interactions within and across borders). Results indicated that food supply from the NCP promoted food sustainability in the rest of China, but the NCP consumed over four times more water than its total annual renewable water, with large variations in food–energy–water–CO2 nexus across counties. Although Hubei Province was seldom directly involved in the food trade, it experienced substantial losses in water and land due to the construction of the South-to-North Water Transfer Project which aims to alleviate water shortages in the NCP. This study suggests the need to understand impacts of agriculture on food–energy–water–CO2 nexus in other parts of the world to achieve global sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.