Steam generation using solar energy provides the basis for many sustainable desalination, sanitization, and process heating technologies. Recently, interest has arisen for low-cost floating structures that absorb solar radiation and transfer energy to water via thermal conduction, driving evaporation. However, contact between water and the structure leads to fouling and pins the vapour temperature near the boiling point. Here we demonstrate solar-driven evaporation using a structure not in contact with water. The structure absorbs solar radiation and re-radiates infrared photons, which are directly absorbed by the water within a sub-100 μm penetration depth. Due to the physical separation from the water, fouling is entirely avoided. Due to the thermal separation, the structure is no longer pinned at the boiling point, and is used to superheat the generated steam. We generate steam with temperatures up to 133 °C, demonstrating superheated steam in a non-pressurized system under one sun illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.