Condensins play a crucial role in the organization of genetic material by compacting and disentangling chromosomes. Based on studies in a few model organisms, the condensins I and II complexes are considered to have distinct functions, with the condensin II complex playing a role in meiosis and somatic pairing of homologous chromosomes in Drosophila. Intriguingly, the Cap-G2 subunit of condensin II is absent in Drosophila melanogaster, and this loss may be related to the high levels of chromosome pairing seen in flies. Here, we find that all three non-SMC subunits of condensin II (Cap-G2, Cap-D3, and Cap-H2) have been repeatedly and independently lost in taxa representing multiple insect orders, with some taxa lacking all three. We also find that all non-Dipteran insects display near-uniform low-pairing levels regardless of their condensin II complex composition, suggesting that some key aspects of genome organization are robust to condensin II subunit losses. Finally, we observe consistent signatures of positive selection in condensin subunits across flies and mammals. These findings suggest that these ancient complexes are far more evolutionarily labile than previously suspected, and are at the crossroads of several forms of genomic conflicts. Our results raise fundamental questions about the specific functions of the two condensin complexes in taxa that have experienced subunit losses, and open the door to further investigations to elucidate the diversity of molecular mechanisms that underlie genome organization across various life forms.
Transvection is an epigenetic phenomenon wherein regulatory elements communicate between different chromosomes in trans, and is thereby dependent upon the three-dimensional organization of the genome. Transvection is best understood in Drosophila, where homologous chromosomes are closely paired in most somatic nuclei, although similar phenomena have been observed in other species. Previous data have supported that the Drosophila genome is generally permissive to enhancer action in trans, a form of transvection where an enhancer on one homolog activates gene expression from a promoter on a paired homolog. However, the capacity of different genomic positions to influence the quantitative output of transvection has yet to be addressed. To investigate this question, we employed a transgenic system that assesses and compares enhancer action in cis and in trans at defined chromosomal locations. Using the strong synthetic eye-specific enhancer GMR, we show that loci supporting strong cis-expression tend to support robust enhancer action in trans, whereas locations with weaker cis-expression show reduced transvection in a fluorescent reporter assay. Our subsequent analysis is consistent with a model wherein the chromatin state of the transgenic insertion site is a primary determinant of the degree to which enhancer action in trans will be supported, whereas other factors such as locus-specific variation in somatic homolog pairing are of less importance in influencing position effects on transvection.
Development can be altered to match phenotypes with the environment, and the genetic mechanisms that direct such alternative phenotypes are beginning to be elucidated. Yet, the rules that govern environmental sensitivity vs. invariant development, and potential epigenetic memory, remain unknown. Here, we show that plasticity of nematode mouth forms is determined by histone 4 lysine 5 and 12 acetylation (H4K5/12ac). Acetylation in early larval stages provides a permissive chromatin state, which is susceptible to induction during the critical window of environmental sensitivity. As development proceeds deacetylation shuts off switch gene expression to end the critical period. Inhibiting deacetylase enzymes leads to fixation of prior developmental trajectories, demonstrating that histone modifications in juveniles can carry environmental information to adults. Finally, we provide evidence that this regulation was derived from an ancient mechanism of licensing developmental speed. Altogether, our results show that H4K5/12ac enables epigenetic regulation of developmental plasticity that can be stored and erased by acetylation and deacetylation, respectively.
Condensins play a crucial role in the organization of genetic material by compacting and disentangling chromosomes. The condensin I and condensin II complexes are widely considered to have distinct functions based on studies in a few model organisms, although the specific functions of each complex are yet to be fully understood. The condensin II complex is critical for genome organization in Drosophila, and is a key anti-pairing factor that separates homologous chromosomes in somatic cells. Intriguingly, the Cap-G2 subunit of condensin II is absent in Drosophila melanogaster, and this loss may be related to the high levels of homologous chromosome pairing in somatic cells seen in flies.Here, we find that this Cap-G2 loss predates the origin of Dipterans, and other CapG2 losses have occurred independently in multiple insect lineages. Furthermore, the Cap-H2 and Cap-D3 subunits have also been repeatedly and independently lost in several insect orders, and some taxa lack condensin II-specific subunits entirely. We used Oligopaint DNA-FISH to quantify pairing levels in ten species across seven orders, representing several different configurations of the condensin II complex. We find that all non-Dipteran insects display near-uniform low pairing levels, suggesting that some key aspects of genome organization are robust to condensin II subunit losses. Finally, we observe consistent signatures of positive selection in condensin II subunits across flies and mammals. These findings suggest that these ancient complexes are far more evolutionarily labile than previously suspected, and are at the crossroads of several forms of genomic conflicts. Our results raise fundamental questions about the specific functions of the two condensin complexes and the interplay between them in taxa that have experienced subunit losses, and open the door to further investigations to elucidate the diversity of molecular mechanisms that underlie genome organization across various life forms.
Development can be altered to match phenotypes with the environment, and the genetic mechanisms that direct such alternative phenotypes are beginning to be elucidated1,2. Yet, the rules that govern environmental sensitivity vs. invariant development (canalization), and potential epigenetic memory, remain unknown. Here, we show that plasticity of nematode mouth forms is determined by histone 4 lysine 5 and 12 acetylation (H4K5/12ac). Acetylation in early larval stages provides a permissive chromatin state at specific switch genes, which is susceptible to induction during the critical window of environmental sensitivity. As development proceeds deacetylation shuts off switch gene expression to end the critical period. We show that inhibiting deacetylase enzymes leads to long-term epigenetic memory, demonstrating that histone modifications in juveniles can carry environmental information to affect organismal traits in adults. This epigenetic regulation of plasticity appears to be derived from an ancient mechanism of licensing developmental speed that is conserved between flies and nematodes. Thus, H4K5/12ac provides a histone plasticity code with epigenetic potential that can be stored and erased by acetylation and deacetylation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.