Premature S-phase entry due to Cdh1 ablation results from premature loss of the CDK inhibitor p27 and a reduced requirement for cyclin E1. This prolonged S phase coincides with slowed replication fork elongation and fewer replication terminations, both of which could contribute to genome instability.
To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.
ENOX2 (tNOX), a tumor-associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin-3-gallate (EGCg) and the isoflavone phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2-mediated alterations of cytosolic amounts of NAD(+) and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1-phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD(+) inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage.
Preclinical studies in animals often require frequent blood sampling over prolonged periods. A preferred method in rats is the implantation of a polyurethane catheter into the jugular vein, with heparinized glycerol as a lock solution. However, analysis of various biologic compounds (for example, microRNA) precludes the use of heparin. We used sodium citrate as an alternative to heparin but observed more frequent loss of catheter patency. We hypothesized that this effect was due to evaporation of lock solution at the exteriorized portion of the catheter, subsequent blood infiltration into the catheter, and ultimately clot formation within the catheter. We therefore tested evaporation and its variables in vitro by using 5 common catheter materials. We used the migration of dye into vertically anchored catheters as a measure of lock displacement due to evaporation. Exposure to dry room-temperature air was sufficient to cause dye migration against gravity, whereas a humid environment and adding glycerol to the lock solution mitigated this effect, thus confirming loss of the lock solution from the catheter by evaporation. We tested 4 catheter treatments for the ability to reduce lock evaporation. Results were validated in vivo by using male Sprague-Dawley rats (n = 12) implanted with polyurethane jugular vein catheters and randomized to receive a nitrocellulose-based coating on the exteriorized portion of the catheter. Coating the catheters significantly improved patency, as indicated by a Kaplan-Meier log-rank hazard ratio greater than 5 in untreated catheters. We here demonstrate that a simple nitrocellulose coating reduces evaporation from and thus prolongs the patency of polyurethane catheters in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.