The function of the nervous system depends on the precision of axon wiring during development. Previous studies have demonstrated that Slits, a family of secreted chemorepellent proteins, are crucial for the proper development of several major forebrain tracts. Mice deficient in Slit2 or, even more so, in both Slit1 and Slit2 have defects in multiple axonal pathways, including corticofugal, thalamocortical, and callosal connections. In the spinal cord, members of the Robo family of proteins help mediate the function of Slits, but the relative contribution of these receptors to the guidance of forebrain projections remains to be determined. In the present study, we addressed the function of Robo1 and Robo2 in the guidance of forebrain projections by analyzing Robo1-, Robo2-, and Robo1;Robo2-deficient mice. Mice deficient in Robo2 and, more dramatically, in both Robo1 and Robo2, display prominent axon guidance errors in the development of corticofugal, thalamocortical, and corticocortical callosal connections. Our results demonstrate that Robo1 and Robo2 mostly cooperate to mediate the function of Slit proteins in guiding the major forebrain projections.
We investigated the role of histone methyltransferase Ezh2 in tangential migration of mouse precerebellar pontine nuclei, the main relay between neocortex and cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in dorsal hindbrain allowing normal pontine neuron migration. In Ezh2 mutants, ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei integrating brain circuitry. Moreover, intrinsic topographic organization of pontine nuclei according to rostrocaudal progenitor origin is maintained throughout migration and correlates with patterned cortical input. Ezh2 maintains spatially-restricted Hox expression which in turn regulates differential expression of the repulsive receptor Unc5b in migrating neurons, generating subsets with distinct responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation of intrinsic and extrinsic transcriptional programs controls topographic neuronal guidance and connectivity in the cortico-ponto-cerebellar pathway.
The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.
Odorants are detected by olfactory receptor neurons (ORNs) located in the olfactory epithelium. In mice, ORNs expressing the same odorant receptor (OR) project to a single glomerulus out of 1800 in the olfactory bulb (OB). It has been proposed that OR-derived cAMP signals guide ORN axons to their glomeruli rather than OR themselves. Recently, it has also been shown that the axon guidance molecule Slit1 and its receptor Robo2 control the dorsoventral segregation of ORN axons as they are projecting to the OB. We have analyzed the development of olfactory projections in Slit1/Slit2 and Robo1/Robo2 single and double mutants. We show that in Robo1-/-;Robo2-/- mice, most ORN axons fail to enter the OB and instead project caudally into the diencephalon. Moreover, in these mice, ORN axons expressing the same OR project to several glomeruli at ectopic positions. Thus, Slit1, Slit2, Robo1, and Robo2 cooperate to control the convergence of ORN axons to the OB and the precise targeting of ORN axons to specific glomeruli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.