The theory of Narrative Economics suggests that narratives present in media influence market participants and drive economic events. In this chapter, we investigate how financial news narratives relate to movements in the CBOE Volatility Index. To this end, we first introduce an uncharted dataset where news articles are described by a set of financial keywords. We then perform topic modeling to extract news themes, comparing the canonical latent Dirichlet analysis to a technique combining doc2vec and Gaussian mixture models. Finally, using the state-of-the-art XGBoost (Extreme Gradient Boosted Trees) machine learning algorithm, we show that the obtained news features outperform a simple baseline when predicting CBOE Volatility Index movements on different time horizons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.