Abstract:We demonstrate for the first time transmission of 54 Gbit/s and 48 Gbit/s over 44 km and 150 km, respectively, utilizing an optical bandwidth of only 3 GHz. We used polarization division multiplexed 512QAM and 256QAM modulation formats in combination with Nyquist pulse shaping having virtually zero roll-off. The resulting spectral efficiencies range up to 18 bit/s/Hz and 16 bit/s/Hz, respectively. Taking into account the overhead required for forward error correction, the occupied signal bandwidth corresponds to net spectral efficiencies of 14.4 bit/s/Hz and 15 bit/s/Hz, which could be achieved in a wavelength division multiplexed network without spectral guard bands.
We report on a 275–500 GHz heterodyne receiver system in combination with a wideband intermediate-frequency (IF) backend to realize 17 GHz instantaneous bandwidth. The receiver frontend implements a heterodyne mixer module that integrates a superconductor-insulator-superconductor (SIS) mixer chip and a cryogenic low-noise preamplifier. The SIS mixer is developed based on high-current-density junction technologies to achieve a wideband radio frequency (RF) and IF bandwidth. The IF backend comprises an IF chain divided into two channels for 4.0–11.5 GHz and 11.3–21.0 GHz and an analog-to-digital converter (ADC) module that is capable of high-speed sampling at 32 Giga samples per second with 12.5 GHz bandwidth per channel and an effective number of bits of 6.5. The IF backend allows us to simultaneously cover the full 4–21 GHz IF range of the receiver frontend. The measured noise temperature of the receiver frontend was below three times the quantum noise (hf/kB) over the entire RF band. A dual-polarization sideband-separating receiver based on this technique could provide up to 64 GHz of instantaneous bandwidth, which demonstrates the possibility of future wideband radio astronomical observations with advanced submillimeter-wave heterodyne receivers.
We achieve 300 Gbps line rate transmission with 100 Gbaud PAM8 over 400 meters of SSMF in C-band. We also demonstrate 100 Gbaud PAM4 400 meters link below the 7% HD-FEC limit of 5•10 -3 without optical amplification and post-equalization.
We present a digital signal processing (DSP) scheme that performs hyperparameter tuning (HT) via Bayesian optimization (BO) to autonomously optimize memory tap distribution of Volterra series and adapt parameters used in the synthetization of a digital pre-distortion (DPD) filter for optical transmitters. Besides providing a time-efficient technique, this work demonstrates that the self-adaptation of DPD hyperparameters to correct the component-induced nonlinear distortions as different driver amplifier (DA) gains, symbol rates and modulation formats are used, leads to an improvement in transmitter performance. The scheme has been validated in backto-back (b2b) experiments using dual-polarization (DP) 64 and 256 quadrature amplitude modulation (QAM) formats, and symbol rates of 64 and 80 GBd. For DP-64QAM at 64 GBd, it isshown that the DPD scheme reduces the required optical signalto-noise ratio (OSNR) at a bit error ratio of 10 -2 by 0.9 dB and 0.6 dB with respect to linear DPD and a heuristic nonlinear DPD approach, respectively. Moreover, we show that the proposed approach also reduces filter complexity by 75% in conjunction with the use of memory polynomials (MP), while achieving a similar performance to Volterra pre-distortion filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.